Using Neural Networks to Solve
Differential Equations in Classical
Mechanics

Julie Butler
— June 22, 2022 E—

DSECOP June Workshop

<o

Theory Alliance
FACILITY FOR RARE ISOTOPE BEAMS

Outline of Presentation

e Introduction to the Module
Topic

e Overview of the Module
Contents

e How can this module be
worked into a classical
mechanics course?

e (onclusions and Future Works

Introduction to the Module Topic

Why Incorporate Machine Learning in Classical
Mechanics?

e Programming and machine learning are becoming increasingly
integrated in many areas of physics
o Important for undergraduates studying physics to be
exposed to these areas
e Students in Classical Mechanics
o Typically sophomores or juniors
o Typically a physics majors only class

What is a Neural Network?

e (Computational system thatlearns to match inputs to outputs by tuning a set
of weights

Solving Differential Equations Numerically

e Method to solve second order differential equations by discretizing the
inputs
o Acceleration and position
e [Kuler’s Method, Euler-Cromer Method, Velocity-Verlet Method

Vi = W = G\t

Yitl = ¥; + Vi1 A8

Solving Differential Equations with Neural Networks

e Assume we are given the acceleration for an object, want to
model its position using a neural network

Yirig)(t) = A+ Bt + 2 NN(W, t)
y(0) = A, v(0) =B

e Requires taking derivatives of the neural network--automatic
differentiation library called JAX

Overview of the Module Contents

Outline of Module

1. Solving Differential
Equations Numerically

2. Whatis a Neural
Network?

3. Solving Differential
Equations with Neural
Networks

4. Further Problems

Prerequisites:

Python programming
including NumPy and
Matplotlib

Newton’s second law and
related

Derivatives, integrals,
matrix-vector math

Overview of Each Notebook Contents

e Introduction to the topic R ——
containing text and
equations “

e Python code broken into
small pieces with text
explanation and comments el

e Short exercises scattered
throughout the notebook

e [Longer “Practice What You
Have Learned” at the end

e weights of the neural

e of the neural network

hidden_neuron = sigmoid(jnp.dot(x, W[0]))

return jnp.dot(hidden_neuron, W[1])

Notebook 1: Solving Differential Equations
Numerically

Introduction to differential
equations

Euler’s Method
Euler-Cromer Method
Velocity-Verlet Method

Walkthrough Example
o Freefall in the presence of linear
drag
Practice What You Have Learned
o Simple harmonic oscillator

500 -

=

Height (meters)
S

100 -

o.

&
o

| f— Exact

- Euler's
- Euler-Cromer
- Velocity-Verlet

0 2 4 6
Time (seconds)

10

Notebook 2: What is a Neural Network?

e Whatis a neural network?

e C(reating a neural network from 0 % e NN Prediction
. 0.75 1 ® ® True Data
scratch using JAX beo | w
e (reating neural networks with 05 | . 3
. . PR @
popular Python libraries > 000 | GNBSSS e em § Som % mg
i ® on ® s
e Practice What You Have Learned ~0.25 1
o Optimizing the from scratch neural ~0.50 1 ¢
network ~0.75 1 "
-1.00 ®

-100 -75 -50 -25 00 25 5.0 75 100
X

Notebook 3: Solving Differential Equations with

Neural Networks

e How to solve differential equations s |
with neural networks
e Setting up a neural network to solve
for position given acceleration
o Freefall with linear drag

e Improving the results
o Hyperparameter Tuning and Step

— Exact
— NN
—— \kelocity-Verlet

Position (meters)
'I—‘ ol-' | |
N (=] -~ (V3]
v o (8] [==]

-15.0 1

-17.5 A

—20.0 1

Stze 000 025 050 075 100 125 1%0 175 200
e Practice What You Have Learned Time (seconds)

o Sliding with friction

How can this module be worked into a

classical mechanics course?

When?

e Most advanced physics topic covered is the exact solution for

freefall with linear drag
o Sections 2.1-2.2 in Classical Mechanics by John Taylor

e (ould be added anywhere in a classical mechanics class
e Post-exam break from learning new material or in place of
instruction if professor is absent

How to Incorporate it In Class

Each Notebook Contains: Option 1: All Three Notebooks in
e Walkthrough of the module Class
containing text and code e Out of class time: ~3hr
e Short exercises problems dispersed e In class time: ~3hr
through the text .
: Option 2: Only Notebook 3 In Class
e “Practice What You Learned” pu y 3

problem at the end e Out of class time: ~shr
e In class time: ~1hr

Option 3: Self-Study

e Out of class time: ~6hr
e In class time: ohr

Conclusion and Future Works

Conclusions and Future Works

e This module introduces neural
networks to students using
simple physics models so the
machine learning takes center
stage

e The knowledge given in this
module should allow students to
investigate further uses of
neural networks on their own

Add more problems with
different types to Notebook 4:

Further Problems
o Exam questions, clicker
questions

Ofk 40
e L

. L -
et

=k
o3

Thank You!

GitHub:

Module
Feedback:

Extra Slides

What is a Neural Network? Neural Network:

Computational
system that is
trained to match a
given input to a
given output

A\ N

\ ‘\
\ e
// \ \ Exact mathematical

: ” Y form for each
| | neuron and layer

Training a Neural Network

Training a Neural Network

Training a Neural Network: Gradient Descent

1 N A 2 Training a
J(W) — N 2@:@ (yz o yz) Neural
Network: Many
iterations of a

8 L YV orward pass
W — W = I l 8(W) gollowe(illl)oy

backpropagatio
n to update the
weights

