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Introduction to the Module Topic




Why Incorporate Machine Learning in Classical
Mechanics?

e Programming and machine learning are becoming increasingly
integrated in many areas of physics
o Important for undergraduates studying physics to be
exposed to these areas
e Students in Classical Mechanics
o Typically sophomores or juniors
o Typically a physics majors only class




What is a Neural Network?

e (Computational system thatlearns to match inputs to outputs by tuning a set
of weights




Solving Differential Equations Numerically

e Method to solve second order differential equations by discretizing the
inputs
o Acceleration and position
e [Kuler’s Method, Euler-Cromer Method, Velocity-Verlet Method
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Solving Differential Equations with Neural Networks

e Assume we are given the acceleration for an object, want to
model its position using a neural network

Yirig)(t) = A+ Bt + 2 NN(W, t)
y(0) = A, v(0) =B

e Requires taking derivatives of the neural network--automatic
differentiation library called JAX




Overview of the Module Contents




Outline of Module

1. Solving Differential
Equations Numerically

2. Whatis a Neural
Network?

3. Solving Differential
Equations with Neural
Networks

4. Further Problems

Prerequisites:

Python programming
including NumPy and
Matplotlib

Newton’s second law and
related

Derivatives, integrals,
matrix-vector math




Overview of Each Notebook Contents

e Introduction to the topic R ——
containing text and
equations “

e Python code broken into
small pieces with text
explanation and comments el

e Short exercises scattered
throughout the notebook

e [Longer “Practice What You
Have Learned” at the end

e weights of the neural

e of the neural network

hidden_neuron = sigmoid(jnp.dot(x, W[0]))

return jnp.dot(hidden_neuron, W[1])




Notebook 1: Solving Differential Equations
Numerically

Introduction to differential
equations

Euler’s Method
Euler-Cromer Method
Velocity-Verlet Method

Walkthrough Example
o Freefall in the presence of linear
drag
Practice What You Have Learned
o Simple harmonic oscillator
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Notebook 2: What is a Neural Network?

e Whatis a neural network?
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Notebook 3: Solving Differential Equations with

Neural Networks

e How to solve differential equations s |
with neural networks
e Setting up a neural network to solve
for position given acceleration
o Freefall with linear drag

e Improving the results
o Hyperparameter Tuning and Step
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o Sliding with friction



How can this module be worked into a

classical mechanics course?




When?

e Most advanced physics topic covered is the exact solution for

freefall with linear drag
o Sections 2.1-2.2 in Classical Mechanics by John Taylor

e (ould be added anywhere in a classical mechanics class
e Post-exam break from learning new material or in place of
instruction if professor is absent



How to Incorporate it In Class

Each Notebook Contains: Option 1: All Three Notebooks in
e Walkthrough of the module Class
containing text and code e Out of class time: ~3hr
e Short exercises problems dispersed e In class time: ~3hr
through the text .
: Option 2: Only Notebook 3 In Class
e “Practice What You Learned” pu y 3

problem at the end e Out of class time: ~shr
e In class time: ~1hr

Option 3: Self-Study

e Out of class time: ~6hr
e In class time: ohr



Conclusion and Future Works




Conclusions and Future Works

e This module introduces neural
networks to students using
simple physics models so the
machine learning takes center
stage

e The knowledge given in this
module should allow students to
investigate further uses of
neural networks on their own

Add more problems with
different types to Notebook 4:

Further Problems
o Exam questions, clicker
questions
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Thank You!

GitHub:

Module
Feedback:



Extra Slides




What is a Neural Network? Neural Network:

Computational
system that is
trained to match a
given input to a
given output
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Training a Neural Network




Training a Neural Network




Training a Neural Network: Gradient Descent
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