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Context & Motivation

Statistics

e Statistics is, by definition, applied to the real world
e Statistics is about data, not just mathematical axioms
e Statistical techniques are highly domain-dependent
o  Physicists, biologists, and economists use very different approaches
Physics
e Physicists are trained with very strong mathematical foundation
e Physicists are experts at quantitatively modeling the real world
o This is a key skill for many industry jobs

e We should train physics students with rigorous statistics
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PHYSICS 166/266 @ Stanford

“Statistical Methods in Experimental Physics”

e Previously, no dedicated statistics foundation course for physicists

o Little bit in intro. lab courses
o Advanced practical tutorial for astro. grad students

o Otherwise rely on CS & Stats. department

e Primarily for advanced undergrads & junior grad students

e Co-developed and co-taught with Prof. Ariel Schwartzman (sch@slac.stanford.edu)

B Statistical Methods in Experimental Physics

B Statistical Methods in Experimental Physics

B Statistical Methods in Experimental Physics

Winter 2019

Winter 2021

Winter 2022

TA

TA

TA
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Philosophy

e Theoretical foundation
o  Why/How does X work?

o  When does X not work? What approximations/assumptions?

o E.g. “Why is Poisson ~ Gaussian for large N?” " (0; — E;)?

2 _
or “Why is this called the y? test statistic? o Zl E;

e Computational practice
o Practice empowers students, gives them confidence, etc.
o Necessary for research, job market, etc.

e Primary goal: training for future experimental physicists

o  With strong foundation, specific advanced techniques can be learned easily
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Design Consideration

e Prerequisites:
o  Most students come with some coding literacy

o Solid foundation on multi-variable calculus and linear algebra

o Atleast two years of undergrad physics

m  Conceptual understanding of QM

m E.g. there is fundamental randomness in nature, there are discrete states

e 10 weeks total (quarter system)

o 3 class meetings / week, 1 for Jupyter Notebook sessions
e What this course is NOT:

o Overview of all methods in current research

o A course on machine learning
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Syllabus

2 Learning Goals

Understand common probability distributions (e.g. binomial, Poisson, Gaussian, Chi-square
etc.), their key properties, and examples of where such distributions occur in physics (and
why)

Be able to state and derive (analytically) key results in probability and statistics, such as
the Central Limit Theorem and Cramér-Rao inequality, and verify and understand them
conceptually by writing computer simulations

Be able to define statistical and systematic errors, identify them in real physics research

context, and explain how errors are propagated throughout data analysis while properly
taking into account correlations

Understand the theoretical limits of the precision of a given physics measurement and how
these can be approached with a given data-set and statistical analysis

Write codes to perform simple Monte Carlo simulations, parameter estimation, confidence-

interval calculation, and hypothesis testing for real physics data analysis

Be able to interpret statistical data analysis results from physics experiments (e.g. histograms,
contour plots, confidence intervals, exclusion limits, etc.)
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Examples of Course Materials

JUPYTER NoTEBOOKS, HOMEWORK PROBLEMS / SOLUTIONS
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Introduction to Monte Carlo Methods (1/2

~ Basic Example #1: Estimating
In this example, we will estimate the numerical value of 7 using a simple Monte Carlo method. The algorithm goes as: 1.0
1. Choose a random point (i, y) within a square by choosing z € (—1,1) andy € (—1,1).
2. For each point, calculate whether the point lies inside the unit circle or not. If it is inside the unit circle, the point is "a hit, and "a miss"
otherwise. Record this result for each point.
0.5
Let's try to run this process 1000 times.
[ ] N_total = 1000
. - > 0.0
# Write codes here to implement steps 1 and 2 above
# Store whether a point is a hit (True) or a miss (False) into the array ‘hits’
# Use numpy arrays as much as possible
x_data = np.random.random sample(N total) * 2 - 1
y data = np.random.random sample(N total) * 2 - 1
r_data = x_data**2 + y data**2 -0.5
hits = r data < 1
-1.0
Visualizing this result, it is clear that the number of hits is related to the area of the unit circle. In fact, this relationship is given by: T T T T T
N me w -1.0 -0.5 0.0 0.5 1.0
s _ Acirde _ T
pﬁoml B Atmnl 4 X

(We will generalize and prove this more rigorously in the next section.)

Now, count the number of hits, and estimate the numerical value of 7 using the data above.

[ 1 N_hits = np.sum(hits)

pi_estimate = 4 * N_hits / N_total
print(pi_estimate)

3.056

Run the above example multiple times. Try using different domain size. Try using different V.. What do you see?
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Introduction to Monte Carlo Methods (2/2

Basic Example #2: Decay of a Radioactive Sample
In this example, we will re-derive a well-known physics result using a MC simulation.
Consider A a particle that radioactively decays into a stable particle B at rate \. That is, over a time period of At, each particle A has 100 =—MC
probability p = AAt of decayingintoB. b Theory
Suppose N 4(t = 0) = 100 and A = 2/second. Calculate and plot N 4(t) over the first 5 seconds.
80
[ 1 NA=[1e0] # start with N A(t=0) and continue to append N A(t) to it
t = [0] # time in seconds
lambd = 2 # 1 / second
T = 5 # simulate over 1600s 60
dt = 0.001 # simulate a step every 1 ms
N_steps = int(T / dt) 2<
p_decay in dt = lambd * dt 40
for i in range(N_steps):
decays = np.random.random sample(size=N A[-1]) < p_decay in dt
N_A.append(N_A[-1] - np.sum(decays))
t.append((i+1) * dt) 20
# just a numpy trick
N_A = np.array(N_A)
t = np.array(t) S
0 ——
The above physical process can also be written in a differential equation: 0 1 2 3 4
dN4(t)
- =—-AN,
= 4 t[s]
which gives the solution:
Na(t) = Na(t=0)e™
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Sampling from Known Distributions
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If we follow the above process, we can visualize that a small interval 5u on the vertical axis will be stretched onto a larger interval on the
horizontal axis if du lies near the range where Fx (z) is very flat—i.e. Fiy" (u) is very steep. Then, the z-region corresponding to this interval
has low density. Vice versa, near whre Fx () is steep, Fy* () is flat, so the vertical interval du gets squeezed onto a narrow horizontal
interval, leading to high density.
‘This conversion factor is precisely related to the derivative of the inverse CDF. This is why the inverse-transform works. (It follows the exactly 0.0
same line of logic as the equation for the transformation of variables.) d d g d - 1.50 1.75 2.00
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Model Fitting & Combining Measurements

1

Then, we can use the result from above to estimate our least-squares fit parameters:
g = (ATV-14) ATV 1y
Vo= (A"V-14) "
a1 (z)

Vi) = (ay(z)

f an(z)) Vo

an, ()

[]

V_theta = np.linalg.inv(A.T @ np.linalg.inv(V) @ A)

theta LS = np.linalg.inv(A.T @ np.linalg.inv(V) @ A) @ A.T @ np.linalg.inv(V) @ y data
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mee E20
+30
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Replicate Nobel Prize Winning Discovery:
SNla Evidence for Expanding Universe (1/2) |g

Supernovae evidence for acceleration of the Universe.

— 0,70.24,2,=0.76
©,=0.20, ©,=0.007
-~ Q,=1.00, 2,=0.00_]

m-M (mag)

36

In 1998, Adam Riess and Brian Schmidt were leading the High-z Supernova Search Team. Using observa- 34F
tional data of Type la (read “type one-a”) supernovae (SNla), their stud)E] provided the first evidence that
the expansion of the Universe is accelerating. A similar result was found simultaneously by the Supernova
Cosmology Team, led by Saul Perlmutte In 2011, Perlmutter, Schmidt, and Riess shared the Nobel Prize 4501 G -100,00=0.00
in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant Qu=0.50,04=0.50

supernovae.” —— Qu=0.20,0,=0.80
supernovae. | Riess et al. (1998) Data

I L

The file Riess_1998_SN_data.csv roughly summarizes SNIa data reported and used in the famous 1998
paper by Riess, et al., including the redshift measurements as well as the luminosity-based distance measure-
ments and their errors.

Compare
against
Paper

Distance Modulus

For the following sets of cosmological parameters, calculate the predicted distance moduli 1, for red- 300
shift 2 ranging from 102 to 1 and plot the results in a single plot; use log-scale in the z-axis.

e Hy=T70km- Sil/l\lpc o7 o7 Redshift z h e
e Oy =1,05,0.2

Briefly comment on how the predicted distance moduli depend on 2.

(c) Suppose: Hy = 68km -s~!/Mpc and ), = 1. Plot the standardized residual r (also called “the 4 X
pull”) of the distance moduli against the redshift z for the given data-set. The standardized residual or
the pull of the i data point is defined by:

Hoi — pp(Zi| Ho, Qar)

O'ua.i

ri(Ho, Q) =

|
N

Calculate x?(Ho, Q) = Y, (ri(Ho, Q2ar))?. Based on the plot and the value of x?(Ho, Q,), discuss
whether the given parameters are consistent with the data.

Hint: What is the distribution of r;’s? What is the value of x?/ndof? (ndof = the number of degrees
of freedom)

Pull [(Data - Prediction) / Error]
o
i

|
IS

-6

0.0 0.2 0.4 0.6 0.8 1.0
Redshift z
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Replicate Nobel Prize Winning Discovery:
SNla Evidence for Expanding Universe (2/2)

100
95
(d) One can estimate the values of Hy and €, by fitting the predicted distance moduli 1, (z|Ho, Qar) to —— x? Scan for Riess et al. (1998) Data
the observed values j,. Assuming that the errors in j, are Gaussian, the maximum-likelihood (ML) P o A e Best-fit Oy =0.115
estimators are obtained by minimizing the x? statistic: | gt | &+ /) dojtevel
lo-range (0.060, 0.176)
5 85
i — MplZi H ,Q\,] 2
X2 (Ho, Qar) = S lri(Ho, ) = 3 {% 2
? K 4 80
where 7 iterates over the observed SNIa data. o - o o - 2
Suppose that there is an independent experiment constraining the value of Hy to 68 km - s~ /Mpc very : ' oo ' '
precisely. Fixing Hj to this value, find the maximum-likelihood estimate of €2/, using eq.and the
given data-set. Report the 68.3%, 95.4%, and 99.7% confidence intervals in 2. 80
SNla (Riess et al., 1998)
—— 68.3% Contour
(f) Now, suppose that Hy is unconstrained. Find the ML estimates of (Hy, Q) using eq‘and the given 75 —— 95.4% Contour
data-set. Visualize the 68.3%, 95.4%, and 99.7% confidence regions in the (Hy, 25/) parameter space 99.7% Contour
along with the maximum-likelihood point estimates. Discuss the difference between this result and the 70 x  Best Fit (0.296, 64.454)
result from part (d). E_
(g) Repeat parts (b) and (c), but with the ML estimates of H and 2. Calculate x2/ndof, and discuss the =
quality of fit. % 65
=
< -
60
55
50 v
0.0 0.2 0.4 0.6 0.8 1.0

Qu
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Replicate Nobel Prize Winning Discovery:
Higgs Boson Discovery in Diphoton Channel

2. Searching for a new particle in the diphoton final state. By 2012, previous experiments have excluded the existence of a Higgs boson in most mass regions
In 2012, both the ATLAS and the CMS experiments at the Large Hadron Collider (LHC) reported obser- except for some range around 120 GeV. Thus, this analysis will target that region specifically. Define
vations of a new particle, expected to be the long-sought-after Higgs boson. After one year in 2013, Peter the mass range [116 GeV, 130 GeV] as the “signal region” and the mass regions outside the signal
Higgs and Frangois Englert received the Nobel Prize in Physics “for the theoretical discovery of a mechanism region as the “control region.”
that contributes to our understanding of the origin of mass of subatomic particles, and which recently was
confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments 4000 .
at CERN’s Large Hadron Collider.” N ] e Background-only Fit
Many rare particles like the Higgs boson decay almost immediately to other Standard Model particles like ‘*\\ + Data
electrons and photons. Hence, an experiment like ATLAS can only observe final states possibly including 3500 *
the decay products of a new particle, but not the new particle themselves. However, when the LHC collides *‘\*
two beams of protons, there are generally multiple different processes that could lead to a similar final state. 3000 \*

Therefore, these experiments usually search for new particles by looking for excess of events in a particular p
final state. The experimentalists first summarize the events of a given final state into a few kinematic variables % ;\*
and then characterize all known processes that could lead to a given final state. Given such background © 2500 =~
estimations, they look for any excess of events in the actual experimental data, which would then suggest that S +\+‘:§+
there is a new, previously unknown physical process that leads to the same final state. This analysis strategy ] 2000 e +
is also referred to as “bump hunting.” 5 -
> i
w .
Covariance Matrix (Stats. + Sys.) 1500 $‘$&-0
6000 \H
", 1000 R -
10 -__' 4000 e 2 **N
| =t
2000 500 ;.“t—‘*'“m,_
g20
£
° g -
© 30 [1a] 200
~2000 " + + + + ++ ++ + _+++++++ + Y +4
2 0 + ++ ++ + +
w 000 5 iy HITHT it e
i
-200 " T - -
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Results & Lessons Learned

STUDENT REVIEWS, INSTRUCTOR REFLECTIONS

Stanford University



Overall Highlights from Student Reviews

Shamelessly cherry-picked ' °_°

e “How to do actual science. To be more specific, to be able to frame physics in a data-driven way
and be able to extract meaningful results and see when results are not meaningful through
various tools in probability and statistics. ... Also, being able to deal with real data in problem sets
and through the final project have given me a lot of applied skills in programming and data
analysis that | am absolutely sure I'll use in the future.”

e “The class covers topics that every experimental physicist should know, especially if you haven't
taken any stat classes. Also, if you're thinking about taking classes like CS 229 (Machine
Learning), you should take this class before that.”

e “Classes and concepts are presented intuitively without losing mathematical formality.”

e “The course delves into the philosophy which motivates real-world physics and managed to make

me (a theorist) appreciate experimental frameworks in an entirely new light.”

16 / Developing & Teaching Stats. for Physics Students Stanford University



More Specific Successes

Shamelessly cherry-picked ' °_°

e ‘| thought this (the basic probability) was absolutely necessary and helped me make
sense of probability theory, even after having taken the introductory course at Stanford.”

e “Supernovae Evidence for Acceleration of the Universe -- this problem required the
synthesis of a great number of skills we acquired over the course and made me feel like
a capable statistics beginner in physics.”

e “...my absolute favorite (problems) were the ones where we could code things up and see
how skills are applied in action.”

e ‘| enjoyed this class because it taught stats from a rigorous perspective.”
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17.58

Challenges & Remaining Tasks .

Admittedly difficult issues ¢ ¢

Question | School I Department

e “How many hours per week on average did you spend on this course ?”
o “One of the most time-consuming physics classes I've taken”
o Nominally 3hrs / unit x 4 units = 12hrs
o This is a very ambitious, heavy course...
e ‘“for people who were not as familiar with coding as | was, some of the coding questions
may have been a bit difficult”
o Indeed! Major challenge if we were to deploy this material to a wider audience
e “The last few lectures were too fast.”
o We often feel rushed towards the end, skipping/missing topics
e Instructor biases towards particles physics & astrophysics examples

o  Community feedback/input would be immensely helpful!
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Thank You!

Please come talk to me during breaks, unconference, and so on!

Sanha Cheong (sanha@stanford.edu)
Ariel Schwartzman (sch@slac.stanford.edu)
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