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Introduction

e Data science mostly consists of mathematics (linear algebra) and statistics
* Classical data science techniques are more similar to physics

 An example: Spectral Clustering
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Structure of the Module

The module has 5 parts ( suggested duration: 100 mins or 2 lectures)
Can be a supplemental lecture for classical mechanics course

Can serve as a good final project

In each part, there are a couple of homework problems

One quiz question and no exam



Features of Module

Introduces the spectral clustering method in data science using familiar
physics problem

Spectral clustering is an important non-linear techniques in data mining
This module does not require heavy coding
Familiar with basic python script (humpy, matplotlib)

Basic knowledge of coupled oscillators and ODEs are required



Part 1: Coupled Oscillators

* First introduce the physics problem

* Construct the equation of motion
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dt?

* Give example code to solve the coupled ODEs



Part 1: Continued

* Solve the ODEs numerically:
* Detailed guidance on solving the equations

using python.

* Play with different initial condition : let the
students to realize: strongly coupled particles

tend to move together.

def produce dv dt(k):
def dv dt(t, xv):
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x1l, x2, x3 = xv[0], xv[1l], xV[2]

dvl = - (k[O,1]+ k[0,2])*x1 + k[O,1] *x2 + k[0,2]*x3
dv2 = - (k[1,0]+ k[1l,2])*x2 + k[1,0] *x1 + k[1l,2]*x3
dv3 = - (k[2,0]+ k[2,1])*x3 + k[2,0] *x1 + k[2,1]*x2

return np.array([dvl, dv2, dv3])

return dv _dt
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Part 2: Graph Laplacian

* Rewrite the equations and produce eigenvalue problems

72 — (k12 + K13) k12 k13 72
5 X = ka1 _(k21 + kzs) ko3 He Ex = —Lx sz — L A.
k31 k3g — (k31 + ks32)
* Observed: strong coupled pairs oscillate together in lower energy mode:
* Naturally: In first few eigenvectors, strongly coupled pairs have similar components

* Let the student to realize first few eigenvectors can encode similarities
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Part 2: Continued

e (Generalize to Data Science:
* If particles are data points

« and K describes the similarity between data points

* First few eigenvectors should group strongly coupled pairs

* (Generalize to N body system
* Give an example for 10 body systems
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Part 3: K-Means

e Students already learned how to embed data into spectral spaces
 Use K-means method to cluster the points in the spectral spaces
* The introduction to K-means is straight forward and lead the students to

Implement It.

class KMeans:
def 1init (self, n clusters):
self.n clusters = n clusters

def fit(self, data, max iter = 100):

km = KMeans(3)
km.fit(data)

cluster assign = km.predict(data)
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Part 4: Spectral Clustering

Combine the previous parts:

Students learned to embed data using similarity matrix K

Students learned to cluster data points based on Euclidean distance

€

Combine together gives our desired algorithm

dists = np.sum( (data[:,None,:] - data[Nomne,:,:])**2, axis = -1)
K = np.exp(-dists)

assignments = SpectralClustering(K, 3 , random seed = 2100)

def plot clustering(data, assign, ax = None):
n = np.max(assign)+1
if ax is None:
ax = plt.gca()
for i in range(n):

ax.scatter(data[assign==i,0], data[assign==i,1], marker=f"${i+1}s$",

return ax

plot clustering(data, assignments)

s = 20%5 )
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Part 5: Standard Package

In this part, we conclude what is learned in this module
It lets students to know they first embed using oscillators and then clustering.

It also teaches students to use standard library for this algorithm ‘scikit-
learn’. (It should be straightforward as we developed the code using the

standard package style)

from sklearn.cluster import SpectralClustering

sc = SpectralClustering(n clusters= 3,
n components = 2,
assign labels = "kmeans",
affinity = "rbf",
gamma = 1,
random state = 2100

)

labels = sc.fit predict(data)



Conclusion

The module leads students to derive “data science” techniques using
what they learned Iin physics class. This will increase students’ interests,
not only in data science but also physics.

The learned data science technigues is quite useful in real applications
The module does not assume strong programming background
The module leads the student to write “standard package” style codes

The module provides useful homework problems to let them play with the
new learned techniques.



