Teaching Machine Learning

A. Gilad Kusne, aaron.kusne@nist.gov
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ML Education

* NIST: Internships, Fellowships, Postdocs
* Bootcamp + Mini-Bootcamp

* Competition

* UMD Course + LEGOs!

* REMI, https://pages.nist.gov/remi/



Internships / Fellowships

* High School: Summer Internship (SHIP)

e Undergraduate: Summer Fellowship (SURF)
* Graduate: Host and Collaborations

* Postdoc (2 years): NSF NRC Fellowship

* Primary recruitment tool.



Join Us!

* NRC — US Citizens only

* ML-driven Autonomous Systems for Materials Discovery and Optimization
* ML for Autonomous Genetic Engineering of Microbial Systems
* ML for High Throughput Materials Discovery and Optimization Applications

* Non-US Citizens, contact: aaron.kusne@nist.gov



Annual Machine Learning for Materials Research Boot Camp and

Workshop Date: Aug 8-12 WERSIT,
Location: Hybrid, UMD College Park ler 5
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| Introduce researchers from industry, national labs, and
i academia to ML theory and tools for rapid data
analysis.

- 4 days of lectures and hands-on exercises (e.g. noise
reduction, unsupervised and supervised techniques,
computer vision, etc.) includes ML for robot science!

- Focus on handling real data, both experimental and
computational.

- Open-source, Python-based modules

ﬁﬁﬁﬁﬁﬁ

- Symposium on Friday

https: //www.nanocenter umd.edu/events/mimr/ Contact: aaron.kusne@nist.gov



Annual Machine Learning for Materials Research Boot Camp and

Workshop UMD and NIST
https: //www nanocenter umd edu/events/mlmr/
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Hands On

* Only open-source code (e.g. scikit
learn)

* No licensing issues

* Free for budget-wary attendees
* Minimum Programming

* Matlab -> Anaconda -> Colab

e Colab — Online Platform
e Saves from hours of installation

* Integration in Lectures
* Alternate vs Split

e Attendees invited to share data to
become exercises.
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& Gaussian Processes and Active Learning 200722a.ipynb B comment 2% Share £

File Edit View Insert Runtime Tools Help Lastedited on January 21

+ Code + Text Connect ~ /2" Editing

We can now sample the GP given our measured data points:

[ ] mean, Cov = m.predict noiseless(X grid, full cov=True)
Z = np.random.mult:i_variateinormal(mean.ravel() , Cov, 5).T
plt.figure (figsize = FIGSIEE)
plot gp(X grid, mean, Cov, training points= (X samples,Y samples))
plt.plot(X grid,Z);
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Some things to remember:

* GP will tend toward the mean as it gets further from the given data.
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Hands On °'

* Diverse Data Types I
 Scalar, Spectra, Images, Hyperspectral Images, Graphs

* Simulation & Experiment N
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Topics Covered

Intro to Python

Data Pre-processing

Unsupervised Learning

Supervised Learning
* Active Learning
e Recent pub work (hands on)

* Workshop

mimr@umd.edu

1/2 day
1/2 day
1 day
1 day
1/2 day
1/2 day
1 day




Day 1: Intro to Python and Data Preprocessing

<>

+ Code
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& Colab, Python, and_Basic_Packages_200906...
File Edit View Insert Runtime Tools Help Lasteditedo..
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Connect

# create an array and then reshape it to a 3 by 3 matrix

b = np.arange (0, 9) .reshape((3,3))
print (b)

¢ = np.arange (0, 9)

print (c)

c = np.reshape(c, (3,3))
print (c)

# find the mean of c aleng each row
print( np.mean(c, axis = 1} }

# find the standard deviation of ¢ along each row

print( np.std(c, axis = 1) )

# print the shape (# of rows and columns)

print (c.shape)

[ro 1 2]

[3 4 5]

[6 7 811

01234567 8]

[[012]

[3 4 5]

[6 7 8]1

[1. 4. 7.1

[0.81649658 0.81649658 0.81649658]
(3, 3)

# matplotlib is the plotting library we'll use.

# this line imports the library
import matplotlib.pyplot as plt

mimr@umd.edu
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Day 2: Unsupervised Learning

Unordered Dissimilarity
matrix d(xl-, xj)

N samples
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http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Day 3: Supervised Learning

* From basic linear p Q/
regression to the most ’

advanced methods.

bi mimr@umd.edu



Day 4a: GPs, Active Learning, Autonomous




Day 4b: Walkthrough of Recent Innovations

* Walkthrough by authors of recent high
Impact papers.

* Open data, open code.

* How to access and work with large DBs.
 Step-by-step in colab.

* Thought processes.

mimr@umd.edu



Focus

 Existing tools and their use
* Minimum Code for Maximum Productivity

* Best Practices

* Many ML techniques exist, when/how to use them
* Full ML Pipeline

* Small data / Big data
e Uncertainty Quantification & Propagation

mimr@umd.edu



Poster Sessions

il T

* Bring in poster on your data challenges.

It

* Brainstorm solutions with MLMR faculty &
students over tacos.
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Hackathon

* For those that want to
work through the
evening.

* Day 1: Announce
challenge

* Day 4: Walkthrough of
solutions.

mimr@umd.edu



Past Attendees: 24 Countries

@ Academic >

@ Industry

‘ @ Government

Past attendees from around the world!

mimr@umd.edu



Mini Bootcamps

* Format: 1.5 hours — 2 days
* Hands-on
* MRS, TMS, APS, NSF Workshops, MLSE, Etc.

mimr@umd.edu



Competition — Big awards: Future on REM|

tOp

Teaching machine learning to materials scientists:
Lessons from hosting tutorials and competitions

Shijing Sun *, Keith Brown “, A. Gilad Kusne * ‘AB

Show more

+ Add to Mendeley o8 Share %9 Cite

https://doi.org

g/10.1016/j.matt.2022.04.019 Get nghts and content

The growing field of data-driven materials research poses a challenge to educators:
teaching machine learning to materials scientists. We share our recent experiences
and lessons learnt from organizing educational sessions at the fall 2021 meeting of

the Materials Research Society.

* Next Competition: August




UMD Course: ML for Physical Scientists

* From intro to Python through ML for autonomous physical science.
* Playing with LEGOs! low-cost LEGO platform for class projects

Household items: Vinegar +
Milk of Magnesium

Why?
* Teach Full Data Science Pipeline

* Students learn Consequences of
Decisions!




SURF

NIST - \:M/
A Low-Cost Education
Platform for Teaching
Autonomous Physical
Science

Logan Saar

B.S., Materials Science and Engineering, UMD (Isaar@umd.edu)

Gilad Kusne, Austin McDannald, Ichiro Takeuchi
University of Maryland & NIST 23



The Challenge of Materials Exploration

Complex materials described by High dimensional space!

Exhaustive Search:

Pressure

10 experiments over values of A
—000 0000000000000 00000000>

Temperature

00000O0COCOOOOODO
000000O0COCOOOOO
000000OCOCOOOOO
000000OCOCOOOOO
000000OCOCOOOOO
o000 0O0OOOOOOOO
000000O0COCOOOOO
o000 O0O0OOOOOOOO
o000 0O0OOOOOOOO T
000000OCOCOOOOO

Temperature

4 parameters:
3 Elements + Temperature

Assume: For each parameter, 10
experiments over range.

102 experiments

4 Parameters -> 10* experiments

For N parameters -> 10(N) experiments!

Complex materials and complex materials physics are
out of reach!




Automated

Robot executes tasks

Image Credit: https://blog.robotiq.com/a-brief-history-of-robots-in-manufacturing

Image C

Autonomous

Robot learns & ..
Reacts to gathered data

ACTIVE LEARNING

25



Artificial Chemist: An Autonomous Quantum

A mobilerobotic chemist Beyond Ternary OPV: High-Throughput Experimentation | Dot Synthesis Bot
and Self-Driving Laboratories Optimize Multicomponent
Burger et al., Nature 583, 237 (2020) Systems Robert W. Epps, Michael S. Bowen, Amanda A. Volk, Kameel Abdel-Latif, Suyong Han,
Bl Kristofer G. Reyes, Aram Amassian, and Milad Abolhasani*
A B____

0-0-0-0-0 C. High-throughput experimentation and closed-loop experimentation QD On-Demand
Q0-0-0-0-0 fresh samples aged samples characterization

0-0-0-0-0 00@ 000 ,V-w - e —

O-0-0-0-0 i Artificial Chemist
o g |

8388 @om - 00g-| Y

o
g\i‘y D D se"-drivln'Ea'ppmxhC = e e A
Blending/mixing or polymers/organic molecules S
+2nl, @
Number of experiments can be significantly reduced CsPbBiil),
c

i Continuous

Burger, B., Maffettone, P.M., Guseyv, V.V. et al. A mobile robotic chemist. Nature 583, 237—- ;fa“ (Nano)Manufacturing el
241 (2020) 2.0{0990090000000000009%5024090000

0 20 40 60 10 é;- 3:; ) 50

t (min) 29 (deg.)
CAMEOQ: Closed-Loop Autonomous Materials Adv. Mater. 2020, 32, 2001626
Exploration and Optimization
Discovered: New best-in-class phase change memory .
material & Other Works:
o Stach, (2021). Autonomous experimentation
ScientificAl: built in phase map and XRD physics 115' ) Eg systems for materials development: A
i : :
10x acceleration over off-the-shelf methods ;ﬁg i it community perspective. Matter, 4(9): 2702-
= el 2726.

Run at: SLAC ] AA

Kusne, et al. Nature Communications 11.1 (2020) 1 cycle in seconds to 10s of minutes




Low Cost Autonomous Physical Science System /@

=
8

synthesis

active learning Raspberry
Pi
=
o
& &

measurement
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Exploring pH of Buffer Solutions

Composition Space
Weak Acid - Acetic Acid -1 M
Conjugate Base - Sodium Acetate Solution -1 M

Goal
Recover Henderson-Hasselbalch Equation from data.

Base

H = Ka + lo : : Our known
p] p \ glO ACld parameters

(for synthesis)

Response Variable Dissociation
(measured) Constant (unknown
to robot)






//@Rslr}
Educational Application (Fall 2021 ENMA 437/637) = @Q

UMD Machine Learning for Materials
Science Course

Concepts and Challenges

- Acquisition Functions
(Exploration/Exploitation)
Gaussian Processes
Hardware/Robotics
Limitations (discretization of
compositions, hardware, etc.)

30



Exploration & Exploitation

Can the Robot Explore the Relationship between Composition & Properties?

Can it use that understanding to prepare a sample with a particular
properties?



Exploration Initiative - (Gaussian Process) at',g:

Active Learning:
-» Acquisition Function
> argmax (variance)

. . " next ratio:
likelihood / N [0.05263158]

5.28 1

5.26 1
5.24 1

5.22 1

! % Acid

7/ 518 -

// 516
// 514 |

pH Next composition g [AcdltBse)
to measure 32

Variance




Autonomous Results - (Gaussian Process)

Acquisition Function

GP model for pH next ratio:
[19.]
- GP mean 29 4
X data
=== True Function
101 — next ratio 28 1
. GP95% CI
1 data ; U7
U
point 5 8%
0- s

00 25 50 75 100 125 150 175 107 ° 10
[Acid]/[Base] log [Acid]/[Base]
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Autonomous Results - (Gaussian Process)

Acquisition Function

GP model for pH next ratio:
[0.05263158]
- GP mean 530 4
8 X data
=== Tue Function 528 -
- next ratio
N =GP 95% CI 551
2 data
@
. 4 o J
points &
§ 5.20 4
2 p
5.18 4
01 5.16 4
514 4

00 25 50 75 100 125 150 175 — ' T
[Acid]/[Base] 1 X 0

log [Acid]/[Base]

34
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Autonomous Results - (Gaussian Process) @

Acquisition Function RYLP»
GP model for pH next ratio:
[1.22222222]
- GP mean
X data
64 === True Function 0.060
- next ratio
GP 95% Cl
0.055 4
3 data 51
S 0050
° = = 1
points S . 5
______ ©
_______________ = 0045
34 } 0.040 1
0.035 1
00 25 50 75 100 125 150 175

[Acid]/[Base] 107! ;03 10!
log [Acid]/[Base]
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ERSIT

Autonomous Results - (Gaussian Process) @

Acquisition Function

. R Ps
GP model for pH next ratio: YL
B [0.11111111]
—— GP mean == t
X data 0.096 - A% rae
=== True Function
6 1 - next ratio
GP 95% Cl 0.094 1
0.092 1
5 data 4 .
(&)
T < 0.090 1
° Q ©
points 4 5
= 0088
0.086 1
3
x
0.084 1
00 25 50 75 100 125 150 175 p . "

[Acid]/[Base] log [Acid]/[Base]
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GP flexibility - (Gaussian Process)

HH equation relies on assumptions

7 — -» No self-ionization of water
X data o . . o, .

A -» Valid only in certain composition range
6 - next ratio

= GP95% Cl > pKa ~ 4.7
5 1 500

5

4 4 400

300 +

3. —
o
W 200 -
g i
00 25 50 75 100 125 150 175 S pKa=5
[Acid]/[Base] & 100 A
pK, =3
1 K
0 -
_ PK, = 11
T % error in HH ol k=N
. . . 0 20 40 60 80 100
Slmpllflcatlon Volume of 0.10 M NaOH / mL
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Parameter Determination

If we start with a hypothetical model, can the robot determine the best
parameters?



SURF

Brief Overview - Bayesian Inference NIST

Probabilistic interpretation ... quantifying uncertainty (how confident are
we?)

Bayes Theorem P (model | data) = P(data | model) P(model)
P(data)
“Posterior” “Prior”
Our confidence in this Our confidence in this model
model being “correct” being “correct” before getting
given the data data

(what we want to know) (assumption)



Parameter Refinement - (Bayesian Inference) aﬁgﬁ

Prior: Assume model has logarithmic form (pH = A + B*log(x))
- A and B are our model parameters

Posterior: Probability of this model and its model parameters given the data

New data alters our prior beliefs — posterior beliefs

Posterior Beliefs

Evidence

Prior Beliefs

40



Autonomous Results - (Bayesian Inference)

—> Solve for Posterior using MCMC
- Confidence interval based on MCMC sampling

6_

21b) _

o

a)

pH = A + B*log(x)

Probability,
arb. units
MY

4 1 C)
1.5 0 2 4 6 8 10
[acid]/[base] ratio [unitless]

o
1

450 4,75 5.00 0.5 1.0
A |units B | units

— Can use parameter uncertainty to decide which composition to measure

next

ANDiE: the Autonomous Neutron Diffraction Explorer. McDannald, et. al, 2021

41



Model Determination

Can the Robot Determine the Physical Law by Itself?



/g'{i{sf"f\

Can the Robot Discover the Physical Law? /\ i

1. Fit multiple functional forms to the data (“Candidates”)
- (sinusoidal, power function, logarithmic, exponential, quadratic, etc.)
- Non-linear least squares regression

—— Optimized Log Model

5l e s x = [Acid]/[Base]
What is the correct form?
:g_40~
pH=A+B*log[C* (x-D)] ?
pH=A+B*sin[C* (x-D)] ?
\ pH=A+B * exp[C * (x-D)] ?
6 2 {Acid)Base) "‘ Alter parameters to get best fit 43



Can the Robot Discover the Physical Law?

2. Create PDF for each candidate at every composition
- (std. of PDF given by std. of residuals)
- Better models have narrow distributions, Worse are broad

6.0 4 —— Optimized Log Model
Optimized Exp Model
® ~—— Optimized Linear Model
5.5 q ~—— Optimized Quad Model
' —— Optimized Cubic Model
—— Optimized Sinusoidal Model
™ Optimized Power Function Model
5.0 1 e data
4.5
I
0O 4.0
3.5 1
3.0 1
2.5 4
2.0 4

4 6
[Acid]/[Base]

s QERSI T}'
/O%/ \\o

@/”’
)
5524

\‘1,'\?-
R YL

\18']

44



Can the Robot Discover the Physical Law?

3. Rank the total likelihood that each candidate model produced the data

Performance Metric
for each candidate
Likelihood is the total
likelihood [sum of
log(likelihood)]
along every
" [Acid]/[Base] collected data point

\ Candidates with
least certainty will

Data have lower total
likelihood




Overfitting

75
75 - ?
5.0 -
5.0 p) P
[ ] 25 ) L]
25 -
0.0 4
0.0
// 25 .
-2.5 .’ H
L] 1 1 ] ] ] T T T
350 o5 2o 35 ob 25 o s -100 -75 -50 -25 00 25 50 75
E BIC = kln(n) — 2In(L).
@)
=

— Prior method only considers goodness of
fit

- Max(sum of log likelihoods)

- Power function emerges as best model

log exp linear quad cubic

Candidate

r r
sin  power

— BIC considers # of model parameters (n)
- Min(BIC), log function is best model



Can the Robot Discover the Physical Law?

\18

4. Create a cumulative distribution of all PDFs at each composition

—— Optimized Log Model
Optimized Exp Model

—— Optimized Linear Model

—— Optimized Quad Model

~— Optimized Cubic Model

—— Optimized Sinusoidal Model

Optimized Power Function Model

® data

a 6
[Acid]/[Base]

10

~ w
w o

| g
o

Weighted Likelihood Values

0.0

— log
| Exp
| — Linear
[ — Quad
‘ | —— Cubic
l | — Sin

47



/ e

Yes!

\18

/5(|
RYLP»/
6. Determine which composition to measure next After 5 measurements:
Look where candidate differ the most
Better candidates weighted more Top Ranked Model
pH=4.753 +1.02 * log
[A/B]
,Acetic Acid HH Equation:
Entropy
5.00 -
4.75 A
4.50 A (f)
0 2 4 6 8 10 -30-
[A]/[B] [A]/[B]

log echp linvlear qulad cullaic siln po‘:ver
Candidate
Next composition



Model Generation (Symbolic Regression)

Can the Robot also self-generate explanatory models?



Symbolic Regression Overview

A
SRS
. . f}*—-‘-:. *1-—{

o Genetic programming NN
o “mates” best functions during fitting & @

. . ¥ ¥
e “mutations” possible as well OO
o Generates potential explanatory functions (22 (%) )+ (75 cos(V))

,..‘ ()

() (FLTE) DENO

0 O J®eITI ONC,
ORE,

mating mutating



Application to Autonomous Physical Science

Set of “candidates” generated
after each data point
measurement

Penalize complexity

»=2xsin(0.0922 +2.03x) — 1.1sin(sin(0.143 + 2.06x))

- Occam’s Razor ’
9 Prevent Overﬁtting Solutions Plotted Accuracy vs Complexity
- .
Best candidates lie along N
Pareto Front (Error vs. N
Complexity)
Can choose Acquisition T 10 2 : « = @

Complexity

Function

Eureqa Free Trial



Results

6.5 -
6.0 -
T 55 -

5.0 1

45

\
¢ (@
\
\
A
A\
N\
~9
h._’q---‘!
' “T-e
T T T T T
000 025 050 075 100

[acid]/[base], arb. units

b)

Complexity | MSE Score Equation

1 0.518 0.000 5.076

4 0.361 0.121 4.253+cos(r)

5 0.106 1.222 6.001-1.833r

6 0.007 2.772 | 4.483-0.984*log(r)

11 0.004 0.093 2.886+cos(r)+exp[exp|-
6.387*sin(1)]]

Figure 5. Symbolic regression combined with active learning for probabilistic model determination. a) example
data, b) output from symbolic regression with 5 models. The model with the highest score matches the HH
equation with a slight deviation of parameters.

Generated candidate of same functional form as HH equation with one
input variable
—> Logarithmic candidate had the highest score
- Candidate with lowest error penalized due to complexity (4 internal

fun

ctions)



Publications

DOI: 10.48550/arXiv.2204.04187 - Corpus ID: 248069191

A Low-Cost Robot Science Kit for Education with = MRS Bulletin August Edition
Symbolic Regression for Hypothesis Discovery — Available now on Arxiv
and Validation

Logan Saar, Haotong Liang, +4 authors A. Kusne - Published 8 April 2022 - Education - ArXiv

The next generation of physical science involves robot scientists — autonomous physical science systems capable
of experimental design, execution, and analysis in a closed loop. Such systems have shown real-world success for
scientific exploration and discovery, including the first discovery of a best-in-class material. To build and use these
systems, the next generation workforce requires expertise in diverse areas including ML, control systems,
measurement science, materials synthesis... Expand

F N
(67,



REMI: REsource for Materials Informatics

* Code in many different
platforms, languages, etc.

Centralize in a curated,
searchable list.

* REMI is open source.

Please Submit!!

pages.nist.gov/remi

Explore Instructional Resources

Show entries

Search:

Resource Name Type Collection Data Science Tags Material Science Tags
how to extract or
plot the NiO band . )
. Element:Ni Element:0 Computation:DFT
structure from a Example matgenb Platform:MaterialsProject .
. Property:BandStructure Property:DensityOfStates
VASP calculation
using pymagen
Adsorption on solid . . .
faces Example matgenb Platform:MaterialsProject Computation:DFT Property:Adsorption
sur
Advanced PIF . L
. Example  Citrine FileFormat:PIF Platform:Citrination
Tutorial
Advanced Queries Example Citrine FileFormat:PIF Platform:Citrination MaterialClass:Oxides
Advanced Queries Example  Citrine
Advanced
Visualization using Tutorial ~ Matminer MaterialClass:Thermoelectric
FigRecipes
. Platform:AFLOW Regression:GradientBoosting
AFLOW machine . . . q
| : Example AFLOW Regression:PropertyLabeledMaterialsFragments. Property:Electronic Property:ThermoMechanical
earnin
g Preprocessing:PropertylLabeledMaterialsFragments
AFLOW.org
Example  AFLOW Platform:AFLOW



Questions



