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ML Education

• NIST: Internships, Fellowships, Postdocs

• Bootcamp + Mini-Bootcamp

• Competition

• UMD Course + LEGOs! 

• REMI, https://pages.nist.gov/remi/



Internships / Fellowships

• High School: Summer Internship (SHIP)

• Undergraduate: Summer Fellowship (SURF)

• Graduate: Host and Collaborations

• Postdoc (2 years): NSF NRC Fellowship
• Primary recruitment tool.



Join Us!

• NRC – US Citizens only
• ML-driven Autonomous Systems for Materials Discovery and Optimization

• ML for Autonomous Genetic Engineering of Microbial Systems

• ML for High Throughput Materials Discovery and Optimization Applications

• Non-US Citizens, contact: aaron.kusne@nist.gov



Annual Machine Learning for Materials Research Boot Camp and 
Workshop

Introduce researchers from industry, national labs, and 
academia to ML theory and tools for rapid data 
analysis.

- 4 days of lectures and hands-on exercises (e.g. noise 
reduction, unsupervised and supervised techniques, 
computer vision, etc.) includes ML for robot science!

- Focus on handling real data, both experimental and 
computational.

- Open-source, Python-based modules

- Symposium on Friday 

https://www.nanocenter.umd.edu/events/mlmr/

Date: Aug 8-12

Location: Hybrid, UMD College Park

2020+1

Hybrid, ~200 attendees!

Contact: aaron.kusne@nist.gov



Annual Machine Learning for Materials Research Boot Camp and 

Workshop UMD and NIST
https://www.nanocenter.umd.edu/events/mlmr/

2016

2017

2018Symposium on Machine Learning Quantum Materials 

2019Symposium on Autonomous Experimentation

Takeuchi (UMD)
& Kusne (NIST)

mlmr@umd.edu



Organizers, Funding, Support

Jim Warren

For facilities



Hands On

• Only open-source code (e.g. scikit
learn)

• No licensing issues
• Free for budget-wary attendees
• Minimum Programming
• Matlab -> Anaconda -> Colab

• Colab – Online Platform
• Saves from hours of installation

• Integration in Lectures
• Alternate vs Split

• Attendees invited to share data to 
become exercises.

mlmr@umd.edu



Hands On

• Diverse Data Types
• Scalar, Spectra, Images, Hyperspectral Images, Graphs

• Simulation & Experiment

mlmr@umd.edu



Topics Covered

• Intro to Python 1/2 day

• Data Pre-processing 1/2 day

• Unsupervised Learning 1 day

• Supervised Learning 1 day

• Active Learning 1/2 day

• Recent pub work (hands on) 1/2 day

• Workshop 1 day

mlmr@umd.edu



Day 1: Intro to Python and Data Preprocessing

Feature Detection

mlmr@umd.edu



Day 2: Unsupervised Learning

Unordered Dissimilarity 
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mlmr@umd.edu

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html


Day 3: Supervised Learning

Loss

Increasing loss

𝛽i

𝛽j

• From basic linear 
regression to the most 
advanced methods.

mlmr@umd.edu



Day 4a: GPs, Active Learning, Autonomous

mlmr@umd.edu



Day 4b: Walkthrough of Recent Innovations

• Walkthrough by authors of recent high 
impact papers.

• Open data, open code.

• How to access and work with large DBs.

• Step-by-step in colab.

• Thought processes.

mlmr@umd.edu



Focus

• Existing tools and their use

• Minimum Code for Maximum Productivity

• Best Practices
• Many ML techniques exist, when/how to use them

• Full ML Pipeline

• Small data / Big data

• Uncertainty Quantification & Propagation

mlmr@umd.edu



Poster Sessions

• Bring in poster on your data challenges.

• Brainstorm solutions with MLMR faculty & 
students over tacos.

mlmr@umd.edu



Hackathon

• For those that want to 
work through the 
evening. 

• Day 1: Announce 
challenge

• Day 4: Walkthrough of 
solutions.

mlmr@umd.edu



6.8%

Past Attendees: 24 Countries

mlmr@umd.edu



Mini Bootcamps

• Format: 1.5 hours – 2 days

• Hands-on

• MRS, TMS, APS, NSF Workshops, MLSE, Etc.

mlmr@umd.edu



Competition – Big awards: Future on REMI

• Next Competition: August



UMD Course: ML for Physical Scientists
• From intro to Python through ML for autonomous physical science.

• Playing with LEGOs! low-cost LEGO platform for class projects

Household items: Vinegar + 
Milk of Magnesium

Why?
* Teach Full Data Science Pipeline
* Students learn Consequences of 
Decisions!
* Teach controls level of complexity



A Low-Cost Education 
Platform for Teaching 
Autonomous Physical 
Science

Logan Saar

University of Maryland & NIST 23

Gilad Kusne, Austin McDannald, Ichiro Takeuchi 

B.S., Materials Science and Engineering, UMD (lsaar@umd.edu)



The Challenge of Materials Exploration

Temperature

10 experiments over values of A

Temperature

P
re

ss
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4 parameters:
3 Elements + Temperature

Exhaustive Search:

Complex materials described by High dimensional space!

Assume: For each parameter, 10 
experiments over range.

102 experiments

4 Parameters -> 104 experiments

For N parameters -> 10(N) experiments!

Complex materials and complex materials physics are 
out of reach!
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Automated Autonomous

Robot executes tasks Robot reacts to input

Image Credit: https://blog.robotiq.com/a-brief-history-of-robots-in-manufacturing Image Credit: Wired - Autonomous Cars

Robot learns & ..
Reacts to gathered data

ACTIVE LEARNING
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Burger, B., Maffettone, P.M., Gusev, V.V. et al. A mobile robotic chemist. Nature 583, 237–
241 (2020)

CAMEO: Closed-Loop Autonomous Materials 
Exploration and Optimization

Discovered: New best-in-class phase change memory 
material 

ScientificAI: built in phase map and XRD physics

10x acceleration over off-the-shelf methods

Run at: SLAC

Kusne, et al. Nature Communications 11.1 (2020)

Other Works:
Stach, (2021). Autonomous experimentation 
systems for materials development: A 
community perspective. Matter, 4(9), 2702-
2726.



Low Cost Autonomous Physical Science System

27measurement

synthesis

active learning

EV3

Raspberry 
Pi



Exploring pH of Buffer Solutions

Composition Space
Weak Acid - Acetic Acid - 1 M
Conjugate Base - Sodium Acetate Solution - 1 M

Goal
Recover Henderson-Hasselbalch Equation from data. 

Our known 
parameters
(for synthesis)

Response Variable 
(measured) 

Dissociation 
Constant (unknown 
to robot) 
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Active Learning Closed Loop System – Rasp. Pi 



Educational Application (Fall 2021 ENMA 437/637)

UMD Machine Learning for Materials 
Science Course

Concepts and Challenges
- Acquisition Functions 

(Exploration/Exploitation)
- Gaussian Processes
- Hardware/Robotics
- Limitations (discretization of 

compositions, hardware, etc.)

30



Exploration & Exploitation
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Can the Robot Explore the Relationship between Composition & Properties?

Can it use that understanding to prepare a sample with a particular 
properties?



Exploration Initiative - (Gaussian Process)
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% Acid

pH

likelihood

Active Learning:
➔ Acquisition Function
➔ argmax (variance)

Next composition 
to measure



Autonomous Results - (Gaussian Process)
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1 data 
point



Autonomous Results - (Gaussian Process)
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2 data 
points



Autonomous Results - (Gaussian Process)
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3 data 
points



Autonomous Results - (Gaussian Process)

36

5 data 
points



GP flexibility - (Gaussian Process)
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HH equation relies on assumptions
➔ No self-ionization of water 
➔ Valid only in certain composition range
➔ pKa ~ 4.7

↑↑ % error in HH 
simplification ...



Parameter Determination
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If we start with a hypothetical model, can the robot determine the best 
parameters?



Probabilistic interpretation …  quantifying uncertainty (how confident are 
we?)

Bayes Theorem P (model | data) =    P(data | model) P(model)
P(data)
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Brief Overview - Bayesian Inference

“Prior” “Posterior” 

Our confidence in this 
model being “correct” 

given the data
(what we want to know) 

Our confidence in this model 
being “correct” before getting 

data
(assumption)
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Parameter Refinement - (Bayesian Inference)

Prior: Assume model has logarithmic form (pH = A + B*log(x))
➔ A and B are our model parameters 

Posterior: Probability of this model and its model parameters given the data

New data alters our prior beliefs →  posterior beliefs
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Autonomous Results - (Bayesian Inference)

pH = A + B*log(x)

A B

→ Solve for Posterior using MCMC 
→ Confidence interval based on MCMC sampling

→ Can use parameter uncertainty to decide which composition to measure 
next 

ANDiE: the Autonomous Neutron Diffraction Explorer. McDannald, et. al, 2021



Model Determination
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Can the Robot Determine the Physical Law by Itself?
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Can the Robot Discover the Physical Law? 

1. Fit multiple functional forms to the data (“Candidates”)
- (sinusoidal, power function, logarithmic, exponential, quadratic, etc.)
- Non-linear least squares regression

x = [Acid]/[Base] 

What is the correct form?

pH = A + B * log [C * (x-D) ]  ?
pH = A + B * sin [C * (x-D) ]  ?
pH = A + B * exp[C * (x-D) ]  ?
…
Alter parameters to get best fit
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2.   Create PDF for each candidate at every composition
- (std. of PDF given by std. of residuals)
- Better models have narrow distributions, Worse are broad

Can the Robot Discover the Physical Law? 
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3.   Rank the total likelihood that each candidate model produced the data

[Acid]/[Base]

pH

Likelihood 

candidate

Performance Metric 
for each candidate 
is the total 
likelihood [sum of 
log(likelihood)] 
along every 
collected data point 

Candidates with 
least certainty will 
have lower total 
likelihood

Data

Can the Robot Discover the Physical Law? 



Overfitting

? ?
? ?

→ BIC considers # of model parameters (n)
→ Min(BIC), log function is best model

→ Prior method only considers goodness of 
fit

→ Max(sum of log likelihoods)
→ Power function emerges as best model
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4.   Create a cumulative distribution of all PDFs at each composition

A

B

A B

Can the Robot Discover the Physical Law? 



6.   Determine which composition to measure next
- Look where candidate differ the most
- Better candidates weighted more

Yes!

After 5 measurements:

Top Ranked Model 
pH = 4.753 + 1.02 * log
[A/B] 

Acetic Acid HH Equation:
pH = 4.756 + 1.00 * log
[A/B] 

PDF 

pH 

[A]/[B] [A]/[B] 

Next composition

Entropy



Model Generation (Symbolic Regression)
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Can the Robot also self-generate explanatory models?



Symbolic Regression Overview

● Genetic programming
● “mates” best functions during fitting
● “mutations” possible as well
● Generates potential explanatory functions

50mating mutating



Application to Autonomous Physical Science
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Set of “candidates” generated 
after each data point 
measurement

Penalize complexity 
→ Occam’s Razor
→ Prevent overfitting

Best candidates lie along 
Pareto Front (Error vs. 
Complexity)

Can choose Acquisition 
Function

Eureqa Free Trial



Results
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Generated candidate of same functional form as HH equation with one 
input variable
→ Logarithmic candidate had the highest score 
→ Candidate with lowest error penalized due to complexity (4 internal 

functions)



Publications
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→ MRS Bulletin August Edition
→ Available now on Arxiv



REMI: REsource for Materials Informatics

pages.nist.gov/remi• Code in many different 
platforms, languages, etc.

• Centralize in a curated, 
searchable list.

• REMI is open source.

• Please Submit!!



Questions
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