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Goals

* Relevant course: Quantum Mechanics 1 (Usually Junior year)
(after students learn about Quantum Harmonic Oscillator)

* Physics goals:
* Introduction to Time-Dependent Schrodinger Equation
» Converting analytical solutions to code

* Machine learning goals:
* Introduction to neural networks
* Integrating physics domain knowledge into ML algorithms
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* Lesson 1: Introduction to Neural Networks
* Lesson 2: Brief background on machine learning and applications to physics

* Lesson 3: Solving the Time-Dependent Schrodinger Equation for a Quantum
Harmonic Oscillator, using machine learning

» Components:
* In-built interactive demonstrations and exercises
» Take-home reading and reference
* Project ideas (trivial to ambitious)
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Introduction to Neural Networks
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Broad introduction to machine learning
» Background for machine learning
» Brief explanation of:

» Parts of ML workflow

» Different ML models

* Deep learning

» Applications to physics, and material to explore further (~70 references)
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Lesson 3

Physics-Informed Neural Networks for a time evolving quantum QHO

A PINN is constructed for the solution of the Time-Dependent
Schrodinger Equation

0 A
[ EW(X’ ) — Hy(x,1) =0

in the domain x € (—x, n),t € (0,27).

The Hamiltonian is given by

The analytical solution y,, ,(x,7) € Cis

TRCOE % (e, 060 + e gy () )

where y,, , is the wavefunction for a QHO consisting of the

superposition of eigenstates ¢, and ¢, with E; being the energy level of
state ¢,.

The inputs of the PINN solver are x, t and w, with the outputs being
u,v € R, where u = Re(y) and v = Im(y) for a QHO with frequency w.
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Lesson 3

PINN Results for 1, w = 1.0
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X — I snapshot for true and predicted values for y, ;with @ = 1.0.
MSE , =1.60e-5, MSE, = 1.37e-5

=D

” CENTER FOR ADVANCED
n SYSTEMS UNDERSTANDING
True and Predicted Density |91/, w = 1.0
0.7 -
0.6 -

0.5 -

0.4

||

0.3 -

0.2

0.1 1

0.0

-}

Probability Density |y,
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Lesson 3

PINN Results for 1, w = 1.0

TD SE Results
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X — I snapshot for true and predicted values for y, ;with @ = 1.0.
MAE, =1.60e-3, MAE, = 1.37e-3

X — I snapshot for true and predicted values for y, ;with @ = 1.0.
MAE, =0.27, MAE = 0.49
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For a system f, with solution u(x, #), governed by the
following equation

f(u):= —+/V[u 1,xe Q,te [T, T,]

fi=0 T A AN

Backpropagation

=2,
PDE Loss
v ‘/

S

where /u; 1] is a differential operator parameterised by 4,
QeRP x=x,x,...,x) t

with boundary conditions W > { >
B(u,x,t) =0 on 0Q w MM

and initial conditions Neural Network Output PDE Loss
Input (Trainable Parameters) (PDE Solution)

I (u,x,t) =0at T
(u,X, 1) 0 PINN Architecture
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Lesson 3

We construct u

Jrer =S (W)

The constraints imposed by the system are encoded in the loss term L for
neural network optimisation.

a surrogate model for the true solution u.
Distribution of Collocation Points

I —0—0—0—0—0—90

Q
where L, denotes the error in the solution within the interior points of the

system. This error is calculated for N.collocation points.
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Ly and L, represent the constraints imposed by the boundary and initial

conditions, calculated on a set of N~ boundary points and N, initial points r —-——
respectively, with u, being the ground truth.
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TD SE Results TD SE Results

Lesson 3
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Advantages of PINNSs:
Mesh free nature: Generate solutions for grids of arbitrary resolution

Hybrid workflow: Generate extremely fast coarse solutions, further polished by iterative
numerical schemes

Automatic Differentiation: Well suited for integration into ML workflows

Generalisable across PDE parameters. Train once, solve a large class of PDEs

Disadvantages of PINNSs:

- For low dimensional problems, numerical approaches are tfaster with theoretical
guarantees

 Lack of interpretability / Black box algorithm

+ Learning high-resolution higher-dimensional system is resource intensive. However,
once learnt, inference is very quick on that domain
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- Take home - RobotPlumber exercise (2 hours)

* In class - General discussion of machine learning, applications in physics
(1-2 hours)

* In class - TD Schrodinger Equation and PINN theoretical background
(1-2 hours)

- Take home - Go through notebook
(2 hours)

- Project
(2 - 8 hours depending on the scope)
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* Module can be used for a Quantum Mechanics course
» Based on feedback, easy to add other potentials like infinite square well

» First two lessons can be used for general ML information, third application module can
be adapted to any course with a differential equation

Ot 5 e 510
'EH,:F_'«'} " The module is available under the DSECOP GitHub repository

ol B

%ﬁ https://github.com/GDS-Education-Community-of-Practice/
mr DSECOP/tree/main/Learning_the_Schrodinger_Equation
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Thank you
Questions Comments Concerns?

Karan Shah
k.shah@hzdr.de

Feedback form:
https://bit.ly/DSECOP-feedback

GitHub
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