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Importance of data science education 

• There has been immense progress in understanding how to extract knowledge from data over the past century

     Much progress has come from fields of statistics, optimization, information theory, machine learning, …

• These tools have become indispensable in many areas of science and engineering and throughout industry

Physicists are not trained in these subjects in either undergraduate 
or graduate level through usual curriculum 

There is no undergraduate or graduate course that physicists typically 
take which teaches these ideas  

• Often when physicists go into industry, they work in data science 



ML / AI research 

• Since the 2012 AlexNet moment, ML / AI has become one of the most exciting areas of research
     Many unimaginable breakthroughs over the last decade (computer vision, games, protein folding, nlp)

• There is a growing community of physicists interested in studying science of ML. 

- Learning and intelligence are some of the most profound natural phenomena

        Should be considered within the purview of physics research

        ML provides toy models to study learning and intelligence. 

- modern ML systems are complex dynamical systems with 106 – 1012 learnable parameters.
 
    Understanding their behavior is a task for physicists

It is time to start teaching ML seriously as part of the physics curriculum 



• Phys 486 / 786 was a joint undergraduate and graduate pilot course on machine learning taught
    in Fall 2023. 

• Satisfied the undergraduate computational physics requirement

• Goal was to teach basic concepts and methods in (contemporary) machine learning and make it to 
    modern deep learning 

MW 4:00 – 5:15pm 
29 Lectures total (approx. 14 weeks)

Blackboard lectures, occasional slides

Half TA: Dayal Singh 

• This course was particularly challenging for the undergraduates (initially conceived of as a grad course)
     Fast-paced concepts + in-depth programming assignments
     Graduate students were comfortable  



• Official enrollment (at end of term): 8 undergrads
22 grads

• # students who completed coursework for grades (at end of term): 6 undergrads
12 grads

• Includes registered auditors

      There were also a handful of additional unregistered auditors

      Approx. 25 – 35 students (+1 faculty) attending lecture 

Enrollment 



Course topics

I. Introduction (1 lecture) 

II. Classic ML (8 – 10 lectures)

III. Theoretical background: statistics, information theory (5-6 lectures)

IV. Optimization (4-5 lectures)

V. Neural networks (5-6 lectures)

VI. Generative models (2-3 lectures)



Textbooks

• Hastie, Tibshirani, Friedman, Elements of Statistical Learning Theory
• Gareth, Witten, Hastie, Tibshirani, An introduction to statistical learning with applications in R
• Christopher Bishop, Pattern Recognition and Machine Learning

Classic ML:

Neural networks, generative models:

•   Goodfellow, Benjio, Courville, Deep Learning, available at https://www.deeplearningbook.org
•   Roberts, Yaida, The Principles of Deep Learning Theory, available at https://arxiv.org/abs/2106.10165
•   Zhang, Lipton, Li, Smola, Dive into Deep Learning, available at https://arxiv.org/abs/2106.11342
•   Murphy, Probabilistic Machine Learning, An introduction, available at https://probml.github.io
•   Murphy, Probabilistic Machine Learning, Advanced topics

Optimization:

• Nocedal and Wright, Numerical Optimization

Other material selected from various books, research articles, lecture notes, original derivations

https://arxiv.org/abs/2106.11342
https://probml.github.io/


Course topics

I. Introduction

 0. Quick survey of some modern ML breakthroughs (AlexNet, AlphaGo, AlphaFold, GPT)

 1. Concept of data distribution

                      Data drawn i.i.d. from data distribution

                      True vs. empirical data distribution  

 2. Brief overview of basic ideas of supervised, unsupervised, and reinforcement learning 



II. Classic machine learning 

1. Linear regression

2.    Linear classifiers: perceptron, logistic regression

3.    k-nearest neighbor method for regression and classification. Example of “non-parametric” method

Mean squared error; L1 , L2 regularization; exact solution for ridge regression; 

solving with gradient-based optimization; locally linear regression 



4. Feature space, kernel trick, kernel regression 

5. Support vector machines 

     Maximizing the margin; hard vs. soft SVM; Lagrange duality and KKT conditions; 

     sparsity of SVM; multi-class SVM; support vector regression   

Using feature functions to do polynomial regression and nonlinear classification problems

Rewriting linear models in feature space using kernels

Some basics of kernel theory, e.g. reproducing kernel Hilbert spaces

Special selected topic: random Fourier features 

II. Classic machine learning (cont’d) 



III. Theoretical background 

1. Information theory
      

       - Entropy 

       - Conditional entropy, mutual information

       - Relative entropy (Kullback-Liebler divergence)

       - Fisher information (second derivative of KL divergence)

       - Fisher information as metric on space of probability distributions 

       -  Other distances between distributions: Jensen-Shannon divergenece, Wasserstein metric and optimal transport



III. Theoretical background (cont’d) 

2. Statistics

- Idea of an estimator 

- Bias and variance of estimators

- Maximum likelihood estimator 

- Origin of loss functions as maximum likelihood estimators (e.g. MSE, cross-entropy) 

- Cramer-Rao lower bound (lower bound on variance of estimator in terms of Fisher information)

- Bias-variance decomposition 

- Biased estimators (e.g. James-Stein estimator for multi-variate normal distributions)

- Double descent in ML

- Bayesian statistics. Idea of prior, posterior, evidence.

- Maximum a posteriori and relationship between priors and regularization terms

- Model selection, k-fold cross-validation 



IV. Optimization 

- Gradient descent

- Stochastic gradient descent. Analysis of structure of correlations in SGD noise 

- Newton’s method

- Momentum and how it helps reduce dependence of convergence rate on condition number of Hessian

- Nesterov momentum 

- Adaptive gradient methods: Adagrad, RMSProp, Adam, AdamW

- Natural gradients (using the Fisher information matrix as a preconditioner)

- Conjugate gradient method

- BFGS (a quasi-Newton method to estimate the Hessian)



V. Neural networks 

- Fully connected feedforward neural networks. Backpropagation. Importance of initialization for signal propagation 

- Residual connections, normalization (layernorm, batchnorm)

- Convolutional neural networks (FCN + translation invariance and locality. Filters, pooling, padding). 

- Recurrent neural networks (seq2seq, vec2seq, seq2vec). LSTM, GRUs, encoder-decoder

- Attention mechanism. Idea of a self-attention layer, scaled dot product attention 

- Transformer architecture (encoder only, encoder-decoder, decoder only) 

- Summary of results of training large transformer models (e.g. in-context and few-shot learning)

VI. Generative models 

- Introduction to why generative models are useful. Idea of modeling the data distribution and sampling from it

- Autoregressive models

- Kernel density estimation

- Diffusion models (2 lectures) 



• 8 homework assignments. Assigned roughly once every 1.5-2 weeks                        

Coursework

Assignments consisted of implementing basic ideas from scratch in python (using numpy package) on
a mix of synthetic datasets  and real datasets 

After implementing methods in numpy, then also used sklearn package to see how to do it easily. For neural 
networks, we used pytorch

We used Google Colab, and assignments were submitted electronically as Google Colab files 

Occasionally there were analytical problems as well that were submitted separately 

Graduate students typically given additional analytical homework problems 

• Final project. Consisted of implementing some ML model on some realistic dataset and writing a 3-5 page report 

TA was instrumental in creating coding assignments that guided students through code, did basic set up of functions,
allowing students to fill in blanks. 



HW 1. Linear regression: implement via gradient descent and exact solution on a synthetic 1d dataset and also on 
            a real dataset of housing prices; Locally linear regression on synthetic dataset. 

HW 2. Linear classification: implement logistic regression for binary classification and multi-class classification on 
            synthetic 2d dataset, flower classification dataset, MNIST, and Ising model dataset. Implement k-nearest
            neighbor classification on concentric circle synthetic dataset

HW 3. Linear classification in feature space and kernels. Use feature functions to classify concentric circle 
            synthetic dataset. Polynomial regression to fit high order polynomial synthetic dataset. Kernel regression with     
            Gaussian kernel on a synthetic sinusoidal dataset and also using random Fourier features. Kernel regression
            using Gaussian kernel for weather prediction using dataset of real temperatures 

HW 4. SVMs. Hard SVM on synthetic dataset in both primal and dual formulations. Soft SVM on non-linearly separable  
            synthetic dataset. SVM applied to a binary MNIST classification task. Support vector regression on a synthetic
            nonlinear regression task.  

HW 5. Information theory. Extract empirical probability distribution of characters in IMDB movie review dataset.
            Compute entropy of the distribution. Repeat using a bigram model. 

Programming part of assignments 



HW 6. Playing with estimators, bias and variance on synthetic datasets. Demonstrating sample-wise double descent
            in linear regression  

HW 7. Neural networks. Implement an FCN 3 ways. (1) in numpy, train on MNIST classification task using SGD on cross-  
            entropy loss. (2) Implement FCN using pytorch autograd (3) Implement using nn.module in pytorch. 
            Apply it to Ising model classification dataset and CIFAR-10. 

            Implement CNNs using Pytorch nn.module. Implement on CIFAR-10 and a classification task on galaxy dataset

HW 8. Predicting chaotic Lorenz series using reservoir computers (echo-state networks). 
            Generating Shakespeare-like text using RNNS and decoder-only Transformers. 

Programming part of assignments (cont’d) 



Student comments from teaching evaluation



Concluding thoughts 

• Machine learning is an enormous subject. 

Many classic ML topics not covered: Gaussian processes, tree-based methods, random forests, boosting

Covered almost no unsupervised learning or reinforcement learning, very little in generative models 

Did not have many physics applications 

• Ideally there would be 2 courses:

     - A regular undergraduate course focusing mainly on classic ML methods, going more slowly and holding students’
       hands more, with a much more applied angle  

     - A special topics graduate course that covers deep learning; theoretical background in statistics, info theory,
       optimization; some research-level advances 

• Physics department should teach these and not relegate to CS / Engineering departments. 


