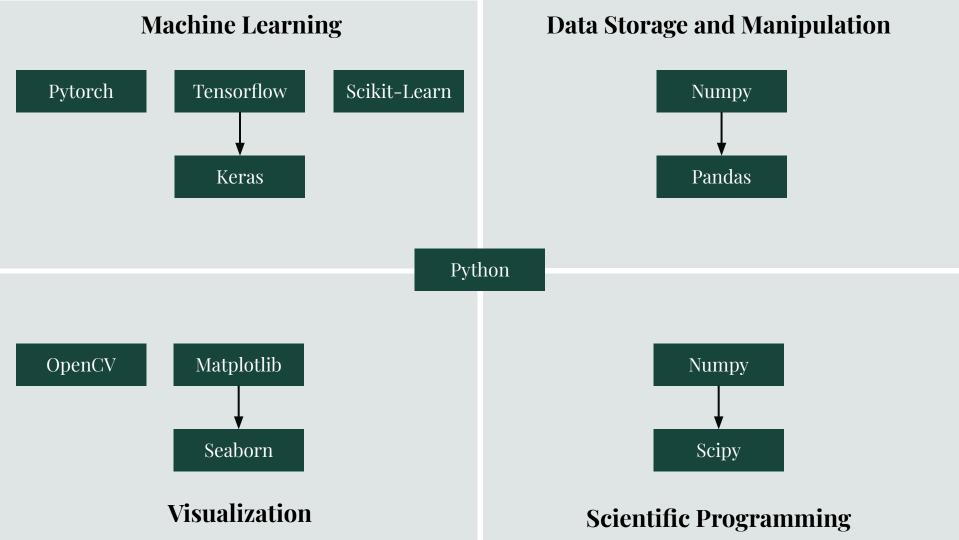
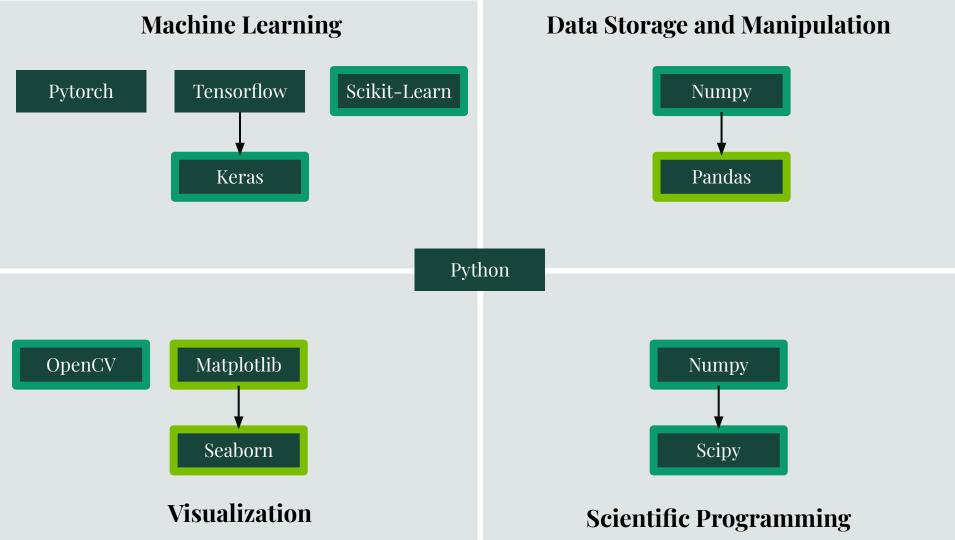
Introduction to Data Science Libraries: Pandas, Seaborn, and Matplotlib Julie Butler


June 26, 2023


Michigan State University

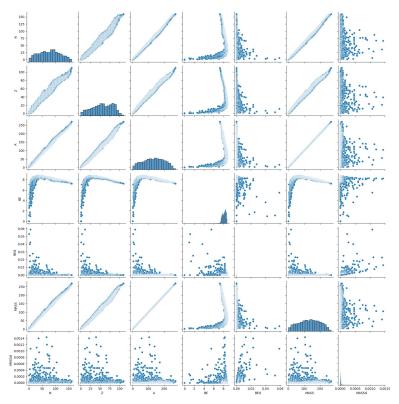
University of Mount Union

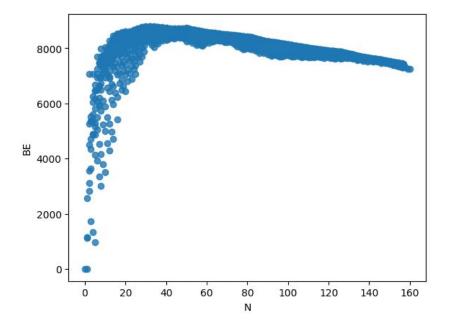
The Data Science Workflow

What is the process of analyzing a data set?

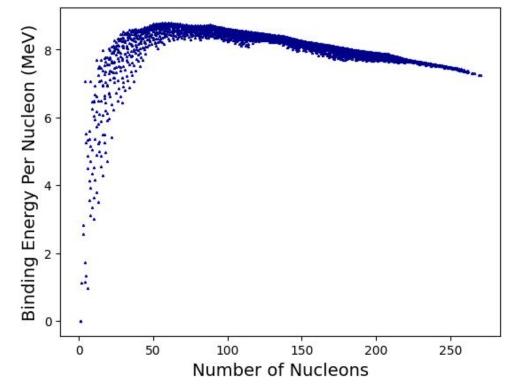
Ν	Ζ	А	EL	BE BEd MASS MASSd
1	0	1	n	0.0 0.0 1008664.91582 0.00049
0	1	1	Н	0.0 0.0 1007825.03224 0.00009
1	1	2	Н	1112.283 0.000 2014101.77811 0.00012
2	1	3	Н	2827.265 0.000 3016049.28199 0.00023
1	2	3	He	2572.680 0.000 3016029.32265 0.00022
0	3	3	Li	-2267# 667# 3030775# 2147#
3	1	4	Н	1720.449 25.000 4026431.868 107.354
2	2	4	He	7073.915 0.000 4002603.25413 0.00006
1	3	4	Li	1153.760 53.033 4027185.562 227.733
4	1	5	Н	1336.359 17.889 5035311.493 96.020
3	2	5	He	5512.132 4.000 5012057.224 21.470
2	3	5	Li	5266.132 10.000 5012537.800 53.677
1	4	5	Be	18# 401# 5039870# 2150#
5	1	6	Н	961.639 42.354 6044955.437 272.816
4	2	6	He	4878.519 0.009 6018885.891 0.057
3	3	6	Li	5332.331 0.000 6015122.88742 0.00155
2	4	6	Be	4487.247 0.908 6019726.409 5.848
1	5	6	В	-467# 334# 6050800# 2150#
6	1	7	Н	940# 143# 7052749# 1078#
5	2	7	He	4123.057 1.080 7027990.654 8.115
4	3	7	Li	5606.439 0.001 7016003.43666 0.00454

1. Determine what the data is

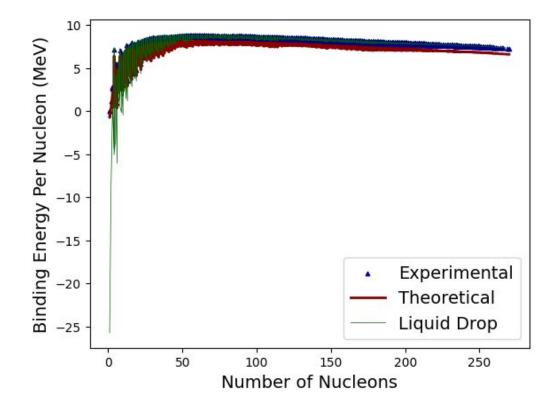

Ν	Ζ	А	EL	BE BEd MASS MASSd
1	0	1	n	0.0 0.0 1008664.91582 0.00049
0	1	1	Н	0.0 0.0 1007825.03224 0.00009
1	1	2	Н	1112.283 0.000 2014101.77811 0.00012
2	1	3	Н	2827.265 0.000 3016049.28199 0.00023
1	2	3	He	2572.680 0.000 3016029.32265 0.00022
0	3	3	Li	-2267# 667# 3030775# 2147#
3	1	4	Н	1720.449 25.000 4026431.868 107.354
2	2	4	He	7073.915 0.000 4002603.25413 0.00006
1	3	4	Li	1153.760 53.033 4027185.562 227.733
4	1	5	Н	1336.359 17.889 5035311.493 96.020
3	2	5	He	5512.132 4.000 5012057.224 21.470
2	3	5	Li	5266.132 10.000 5012537.800 53.677
1	4	5	Be	18# 401# 5039870# 2150#
5	1	6	Н	961.639 42.354 6044955.437 272.816
4	2	6	He	4878.519 0.009 6018885.891 0.057
3	3	6	Li	5332.331 0.000 6015122.88742 0.00155
2	4	6	Be	4487.247 0.908 6019726.409 5.848
1	5	6	В	-467# 334# 6050800# 2150#
6	1	7	Н	940# 143# 7052749# 1078#
5	2	7	He	4123.057 1.080 7027990.654 8.115
4	3	7	Li	5606.439 0.001 7016003.43666 0.00454


2. Determine if any of the data needs to be removed or reformatted

1 0 1 n 0.0 0.0 1008664.91582 0.00049	
0 1 1 H 0.0 0.0 1007825.03224 0.00009	
1 1 2 H 1112.283 0.000 2014101.77811 0	0.00012
2 1 3 H 2827.265 0.000 3016049.28199 0	0.00023
1 2 3 He 2572.680 0.000 3016029.32265 0	0.00022
0 3 3 Li -2267# 667# 3030775# 2147#	
3 1 4 H 1720.449 25.000 4026431.868 107.3	354
2 2 4 He 7073.915 0.000 4002603.25413 0	0.00006
1 3 4 Li 1153.760 53.033 4027185.562 227.7	733
4 1 5 H 1336.359 17.889 5035311.493 96.02	20
3 2 5 He 5512.132 4.000 5012057.224 21.47	70
2 3 5 Li 5266.132 10.000 5012537.800 53.67	77
1 4 5 Be 18# 401# 5039870# 2150#	
5 1 6 H 961.639 42.354 6044955.437 272.816	
4 2 6 He 4878.519 0.009 6018885.891 0.057	7
3 3 6 Li 5332.331 0.000 6015122.88742 0	0.00155
2 4 6 Be 4487.247 0.908 6019726.409 5.848	3
1 5 6 B -467# 334# 6050800# 2150#	
6 1 7 H 940# 143# 7052749# 1078#	
5 2 7 He 4123.057 1.080 7027990.654 8.115	5
4 3 7 Li 5606.439 0.001 7016003.43666 0	0.00454


- BE and BEd are in units of keV
- MASS and MASSd are in units of μu

3. Make some initial graphs4. Determine which graphs are best



5. Create a plot that can be shared or published

6. Compare the data to known results

How can these 6 steps be accomplished with Python?

- 1. Determine what the data is
- 2. Determine if any of the data needs to be removed or reformatted
- 3. Make some initial graphs
- 4. Determine which graphs are best
- 5. Create a plot that can be shared or published6. Compare the data to known results

How can these 6 steps be accomplished with Python?

Pandas

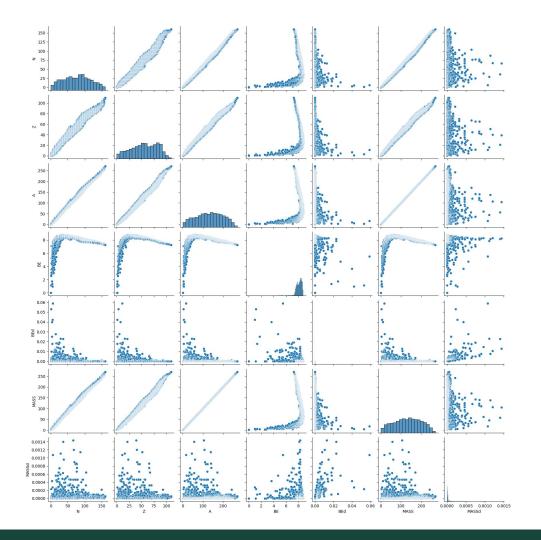
- 1. Determine what the data is
- 2. Determine if any of the data needs to be removed or reformatted

Seaborn

- 3. Make some initial graphs
- 4. Determine which graphs are best

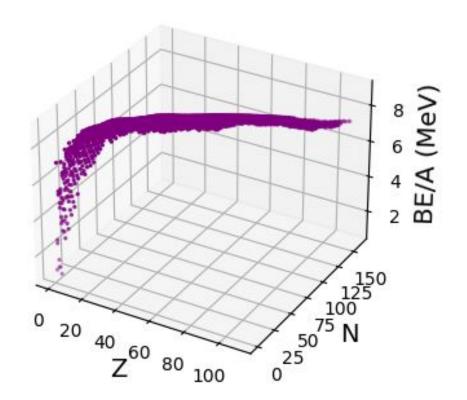
Matplotlib

5. Create a plot that can be shared or published6. Compare the data to known results


What this Module Covers

Pandas: Initial Data Analysis

- Importing data from a file
- Printing the Pandas Dataframe and just the "head"
- Accessing the different data columns and manipulating the values
- Removing unwanted data
- Creating masks (sub-Dataframes)


Seaborn: Initial Graphical Analysis

- Use pairplot to determine which plots may be of interest
- Use regplot to create a larger version of the plots of interest

Matplotlib: Creating Custom Graphs

- Creating 2D line plots and scatter plots
 - Customizing line widths, marker styles, colors, etc.
 - Adding axes labels
- Plotting multiple data sets on one plot
 - Creating a legend
- Creating three dimensional plots
- Creating plots with error bars

Conclusion

- The module cannot cover every feature of these libraries
- Conclusion provides links on where to learn more

Lines, bars and markers

Extra Exercise/Extended Practice

Main Section of the Notebook

- Create a scatter plot with these variables
- Change the color
- Change the marker style
- Change the marker size
- Add an x label
- Add a y label

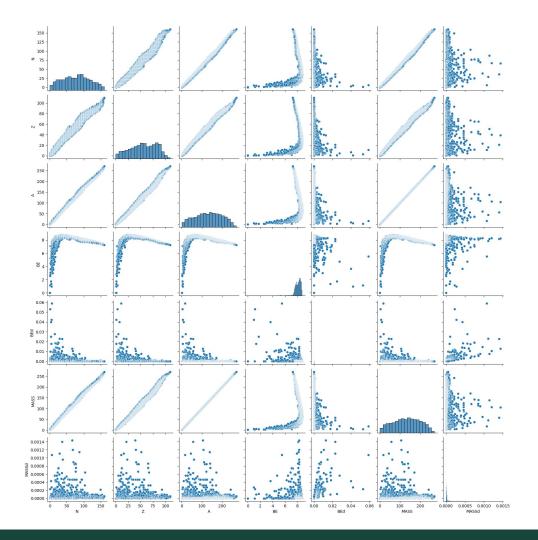
Extended Practice

- Create a masks the extracts all elements with atomic number greater than 103 (super heavy elements).
- Create a pairplot with the hue being the proton number.
- Create a formatted two dimensional plot for atomic mass with error bars and axes labels.
- Create a formatted three dimensional plot for atomic mass with axes labels.

Details of the Module

Assumed Knowledge

- There is no assumed physics knowledge, not even of nuclear physics
- It is assumed the students know basic Python and Numpy BUT the exercises are very simple


EXERCISE 6: Set the variable color in the below cell to your chosen Matplotlib color. Make sure you make the color name a string (enclosed in " or '), and spell it exactly as it is found in the documentation. Next, run the updated plot statement and make sure the color of the plot has changed.

1 color =

1 plt.plot(A,BE,color=color)

Physics Learning Goals

• Be able to create plots that display physics data in a meaningful way

Data Science Learning Goals

- Be able to read documentation for functions from the various data science libraries
- Be able to use Pandas to import a data file, format it as a Pandas Dataframe, and begin exploring and analyzing the data
- Be able to use Matplotlib and Seaborn to further your analysis of the data set
- Be able to use Matplotlib and Seaborn to make physically relevant plots of the data set both in two dimensions and in three dimensions

Class and Time Estimates

- This could be plugged into any class at any level as long as the students have basic Python knowledge
 - Lab course to learn how to graph data
- Time Estimates
 - Could be completed in a standard 3 hour lab period
 - Could be started in a standard 1 hour class and then completed as homework
- The module can be broken up
 - Pandas section can function independently
 - Seaborn section requires the Dataframe from Pandas
 - Matplotlib requires the extracted columns from the Dataframe

Conclusion

Conclusion

- This module is designed to teach students of any physics level and a basic Python level the three important data science libraries: Pandas, Seaborn, and Matplotlib
- Though the module only introduces these libraries, it gives the students the skills and resources to continue to learn to use the libraries
- It also teaches them the basic workflow that comes with analyzing a new data set

