DSECOP 2023 Workshop

Connecting Monte Carlo Methods to
Modern Al/ML

Ashley S. Dale
Physics, Purdue School of Science, IUPUI

] Outline

1. Module Overview
2. Notebook Walkthrough

3. Future Work

4. Inclusion in a Computational Physics or Statistical Mechanics course

5. Conclusion

Ashley S. Dale — DSECOP 2023 Workshop

Module Overview

Physicists, Computers, and
the Metropolls-Hastlngs
Algorithm

- MANIAC Computer
c. 1953 at Los Alamos
National Lab

- MANIAC is custom built for
the Metropolis-Hastings
Algorithm invented by A.
Rosenbluth, M.
Rosenbluth, M. Teller and
E. Teller

- Metropolis-Hastings
Algorithm calculates
equations of state using THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21. NUMBER 6
Monte Carlo integration

Niciioras MeTRoroLss, ARIANSA W. RosexsLumi
I ':

Eowaro TeLurr,* Department o

Ashley S. Dale — DSECOP 2023 Workshop

Equation of State Calculations by Fast Computing Machines

JUNE, 1953

Images source: https://discover.lanl.gov/news/0412-maniac/
https://twitter.com/XihongLin/status/1369146556637732873

| Metropolis-Hastings Algorithm R RRERE

1. Initialize variables: Lattice L, temperature T : :g:: gzwn [Inltlal Lattice
2. Choose a site in the lattice
3. Calculate the energy

— Physicists like to use a Hamiltonian
4. IF energy E decreases when a state change is made at the lattice site) D G Y U G G G S G |

— Keep the state change and check another lattice site) S D G W D G G G W |

. " L]
5. IF energy E increases with a state change BUT the state is thermodynamically probable I Flnal Latt|Ce)|
according to the Boltzmann distribution

— Keep the state change

6. Repeat from step 2 until you are happy with the system state

Ashley S. Dale — DSECOP 2023 Workshop

] Physics + Monte Carlo + Machine Learning

Monte Carlo Machine Learning

Understand physics model vs physics Markov Chains
simulation
Familiarity with Ising model for Monte Carlo Integration

ferromagnetic systems

Understand when to use analytical, Metropolis-Hastings algorithm

linear, and non-linear computational

approaches

Familiarity with simulation metrics The importance of choosing the correct

probability distribution

The Universal Approximation Theorem
and when to choose a deep neural
network

Three kinds of regression models:
1. Polynomial based

2. 1D Latent-feature based

3. 2D image based

Code optimization and efficiency
techniques. It won’t work if it’s too slow!

Unsupervised learning approaches
compared to supervised learning
approaches

Ashley S. Dale — DSECOP 2023 Workshop

Notebook Walkthrough

| N1: Intro to Monte Carlo Methods and Markov
Chains

1. The difference between a model and a 0.3
simulation

2. The definition of a Markov Chain, and how 0.7
to implement one

3. How to implement Monte Carlo integration @

4. How to evaluate simulation results using
standardized metrics

Ashley S. Dale — DSECOP 2023 Workshop

] N1: Programming Exercise 1

Asks students to
program an
implementation of the
Markov Chain shown,
then consider the effect
of sampling from
different distributions.

Count

EtoA
Uniform
1 Normal
103 3
102 3 S
3 (o)
: (]
10! 4
109 3
5 10 15
of Tries

103 1
102 3

10? 5

AtoE

Uniform
Normal

T

5

T T

10 15
of Tries

Ashley S. Dale — DSECOP 2023 Workshop

] N1: Programming Exercise 2

(FY) = 371 Zido S(X0)
1. Asks students to select an integral 1001 —
from a table in the notebook

80 1

AN

2. Students calculate an analytical
solution for that integral

Percent Error

3. Students use Monte Carlo
integration to evaluate the integral,
and compare the results between

; : m
the numerical and analytical o

. 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
SOl UtIOnS Number of Values in Sum le6

Ashley S. Dale — DSECOP 2023 Workshop

] N2: 2D Ising Model Simulation

1. The Ising model for ferromagnetic systems Figure 2. Adding Nearest Neighbor Interactions
10 1 L L 4 L 4 L J ® ® ® L L L J
2. How to implement the Metropolis-Hastings P ———
algorithm for a 2D Ising Lattice 8 L I T R e
[® o o ®* o o ®* o o
3. How to evaluate the efficiency of your code 6 © o o 0o o 0o 0 o o o o
and time the execution ® o o o 0o o 0 o o $ SpiDow
4 [] L S S * 0o o * 00
4. How to speed up your code so that you can o o 0 0 o o o o o o
run larger simulations using the same 21 o o o o o o o o o o
computational resources bbbk
0 2 2 6 8 10 12

Ashley S. Dale — DSECOP 2023 Workshop

| N2: Programming Exercise 1

" Unoptimized
Students implement the =)
Metropolis-Hastings algorithm for =..
the 2D Ising Model twice: .

T T T T T T T T T T T T T T
10 15 20 25 30 35 40 0.00 025 050 075 100 125 150 175 2.00

1. Unoptimized: 40x40 lattice o e

takes > 700 seconds "] Optimized| | =
2. Optimized: 200x200 lattice "
takes < 20 seconds

| Rl .
L L 25 50 75 100 125 150 175 200 000 025 050 075 100 125 150 175 2.00
verall statistics are comparable " ierse Terperatre §

Ashley S. Dale — DSECOP 2023 Workshop

| N2: Programming Exercise 2

Slider lets students scan through 500 lattices sequentially

Students use their Optimized L~] o Lattice magnetic domain structure is explicitly
= V999959990599 I connected to net-magnetization plot in free-
code to create a set of 500 " TR s i
ponse questions
lattices at a range of N
temperatures.

Interactive notebook plotting

and free-response questions
encourage students to match [
lattice structures to the net- . 2
magnetization plot.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Inverse Temperature B

Ashley S. Dale — DSECOP 2023 Workshop

N3: Temperature Prediction of Magnetic

Hidden

Patterns

Output

* The difference between linear/non-linear
regression and Deep Neural Networks (DNN)

* The Universal Approximation Theorem AKA
“Why a DNN works at all”

* How to implement a Fully-Connected Deep
Neural Network (FC-DNN) for regression of
1D data

* How to implement a Convolutional Neural
Network (CNN) for regression of 2D data

Convolutional Neural Network

//776988 source:

Ashley S Dale — DSECOP 2023 Workshop https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File: Typical_cnn.png,

https://en.wikipedia.org/wiki/Artificial_neural_network#/media/File:Colored_neural_network.svg

] N3: Programming Exercise 1

Implement a Support Vector Regression SVR Prediction Results
(SVR) model in two lines using sklearn: o
0.8 1
svr = SVR(kernel="sigmoid", C=1, gamma="auto", epsilon=1E-12)
y_predict = svr.fit(X_train[:, Nonel, y_train).predict(X_test[:, Nonel) g 0.6 4
. s k]
Goal is to create intuition about how the 5
. . T 047
model behaves given the data by trying =
to optimize it. 2 o2
0.0

Students modify the hyper-parameters Uit —
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

and keep a I.og of the Mean Squared Inverse Temperature

Error for their attempts.

Ashley S. Dale — DSECOP 2023 Workshop

] N3: Programming Exercise 2

FC-DNN Prediction Results

Students implement a Fully Connected o
Deep Neural Network (FC-DNN) using]
scikit-1learn and 4 lines of code

0.6 1

0.4 1

Dataset is the net-magnetism of the
lattices and the inverse temperature

Net Magnetism

0.2 1

Students modify the hyperparameters
0.01 3y Tt KX 2 TR E L S

for the mOdel and tra.Ck the Mean 0.8‘00 0.8‘25 0.8‘50 0.8|75 0.9‘00 0.9‘25 0.9‘50 0.9‘75 1.0‘00

Squared Error of their results Inverse Temperature

Ashley S. Dale — DSECOP 2023 Workshop

] N3: Programming Exercise 3

Students implement a 2D Convolutional -
Neural Network (CNN) using TensorFlow 0s Predictions on Test
and a GPU '

Dataset is the 2D lattices and inverse 0.6 1

temperature
0.4
This model is much noisier than either the
SVM or FC-DNN model, but it does a better
job capturing thermal fluctuations

Net Magnetism

0.2 1

0.0 1

If students have time and resources, they , . , , , ,
can further optimize the model. However, s a0 a.85 S Has =00
notebook questions are limited to Inverse Temperature
conceptual understanding of this work.

Ashley S. Dale — DSECOP 2023 Workshop

Future Work

] N4: Magnetic Domain Clustering

1. Understand the difference
between supervised and
unsupervised machine learning
methods

2. Understand how latent features
(like magnetic cluster size) can
be used to create meaningful
analysis

Magnetic domains simulated during a
temperature sweep

Ashley S. Dale — DSECOP 2023 Workshop

| N5: Quantum Computing Extension

Google has a Quantum Virtual Machine (QVM)
available claimed to approximate a hardware system

to Within experimental error Your quantum virtual machine weber is ready, here is the qubit grid:
(0, 5)—(0, 6)

1. Replace atoms with “qubits”

il, 4)—I(1, 5)—(1, 6)—(1, 7)

2. Learn to use a QVM by implementing iz' 4’—|2' e e
Metropolis-Hastings algorithm and a modified 3, (3, Dt3, 3, 53, 63, T)—t3, 813, 8
Ising model |

r, 1)—{4, 2)—I(4, 3)—(4, 4)—I(4, 5)—(4, 6)—I(4, 7)—(4, 8)—(4, 9)
3. Introduces basic hardware design and python (5, 0—{s, D—s, 2—(5, A—{s, H—l5, 5}—(5, I—(5, N5,)
libraries used for quantum computing | |
. . (6, 1)—(6, 2)—I(6, 3)—I(6, 4)—I(6, 5)—I(6, 6)—I(6, 7)
applications |
(7, 2)—(7, 3)—(7, 4)—(7, 5)—(7, 6)
4. Allows comparison with purely software methods (8, 3—(8, —(5, 5)
. . (9, 4)
Connections to undergraduate quantum mechanics

course Example qubit array from Google Colab tutorial

Ashley S. Dale — DSECOP 2023 Workshop

Inclusion in Physics
Course

] Notebook Sequence

100% homework

Time: 3-5 hrs
(optional) 50% in-class 50% in-class
100% homework 50% homework 50% homework
Time: 1 hr Time: 1+ hr Time: TBD

: 100% homework
Designed for 3 and 4th year Time: TBD
physics students

Ashley S. Dale — DSECOP 2023 Workshop

| Emphasis on gaining “Hands-on” Intuition over
memorizing derivations and algorithms

Encourage students to treat Jupyter Notebooks as “cheat-sheets”

Markov Chains

+ Soft introduction to * Ising model * How to choose a * How to identify + Differences
Random Variables derivation supervised machine latent features in between hardware

* Modeling vs * General approach learning model for the data and software
Simulation to optimizing code complicated data * How to use those implementations of

* Quantifying + Connecting numeric * How to compare latent features an algorithm
uncertainty in plots to different models meaningfully in * Even more
computations visualizations analysis probability

Ashley S. Dale — DSECOP 2023 Workshop

| Scaffolding Approach for Programming:
Fill-in-the-blank Coding

. Students are expected to form good coding habits by
. Reading code, code comments, and code documentation

. Reusing copy-paste code or lightly-editing existing code based on instructions in the notebook

. Reconstructing code in template functions

. Students are expected to programmatically perform calculations, e.g. calculating the average value of a list of numbers
. Students are not expected to create algorithms from scratch

. Students are not expected to be familiar with Python libraries or functions

. Instructor solutions and rubric provided for all exercises; additional instruction notes provided where potentially useful

What does this look like in a practical sense?

Ashley S. Dale — DSECOP 2023 Workshop

] Example: Reading Code Comments

Decide on a probability distribution function for the simulation

This type of exercise asks # (uncomment [one}lwf the probability lines in the function):

students to
1. Read the existing code
and comments

def get_probability():

1
2
3
4
5 # This function returns a probasdlity value when called
6
7
8

——> This is a sample from a uniform disTwiQution from numpy

2. Decide what should be
returned as the result 10

(o]

#prob = np.random.uniform(@, 1, 1) Important Word

11 # ——> This is a sample from a normal distribution from numpy
12 # ——> It is centered at 0.5 to match the default uniform distribution
3. Uncomment a 13
command to make this 14 #prob = np.random.normal(loc=0.5, size=1)
15
happen 16 return prob

Ashley S. Dale — DSECOP 2023 Workshop

] Example: Reading Documentation

Notebook Prompt S —

Create a figure showing the histogram distribution of the number of steps it took to change states for
both data_EtoA and data_AtoE.

Matplotlib Histogram

g Python hosting: Host, run, and code Python in the cloud! @
L]
HOW to make hIStOCIramS Wlth MatDIOtIIbDVDIOt Matplotlib can be used to create hi: A hi shows the on the vertical
axis and the hori; axis is another di ion. Usually it has bins, where every bin has a mi .
i i : L « Beginner
nimum and maximum value. Each bin also has a frequency between x and infinite. 3
« Graphical Interfaces (GUI)
[1 1 # Put your plotting code here Related course + Web development
o § « Database
« Data Visualization with Matplotlib and Python « Robotics
o « Matplotlib
Matplotlib histogram example
* Network

Below we show the most minimal Matplotlib histogram:

Students are expected to become T

familiar with resources available e e
outside of the notebooks to help them ~ |ow
finish assignments. Many hyperlinks .
are included throughout the :

assignments.

Ashley S. Dale — DSECOP 2023 Workshop

* Machine Learning

Example: Reusing and Reconstructing code in
template functions

Completed code provided earlier in the notebook

Making arger

Complete the MCMC_step function below

sart N = 25 def MCMC_step(beta: float, lattice: np.array):

Create a new lattice nun

al
2
: 3
4 4
Z init_lattice = np.random.uniform(size=(sqrt_N,sqrt_N)) 5 Function to repeat the Monte Carlo Markov Chain for this system.
7 6 beta: the inverse temperature value for the MCMC step
8 i lattice: the system of spins that will be simulated
8 returns: an updated version of the input lattice

#mask lattice
init_lattice[init_lattice>0.5]=1
9 init_latticelinit_lattice !=1]=-1

10

11 # A new step here to create non-interacting atoms around the edge 9 nun

12 lattice = np.zeros((sqrt_N+2, sqrt_N+2))

13 latticell:sqrt_N+1, 1:sqrt_N+1] = init_lattice 10

14 11 # Figure out the size of the lattice
15 # Define a range of temperatures to test .

16 beta = np. linspace(o, 2, 1000) oy 12 [rows, cols] = lattice.shape
T Students are asked to fill in 13

B oy (IS D LI D (IS G . . 14 # keep the neighbors inside the region
» the new function. All that is 15 for r in range(1, rows-1):

21 # For each temperature . .
! i . . 16 for c in range(1,cols-1):
2 for te in tadnlbeta): needed is comprehension 17
24 # Repez.it the MCMC step 100 times to make sure the system is stable 18 # sum over the nearest neighbors
[— and copy-paste. 19 Sum_\N =
27 [rows, cols] = lattice.shape # Figure out the size of the lattice 20
28
29 for r in range(1,rows-1): # keep the neighbors inside the region 24 # calculate the energy
30 for ¢ in range(1,cols-1): 22 E_a =
31 !
32 # sum over the nearest neighbors 23
33 sum_NN = (latticelr-1,cl+latticelr+1, cl+latticelr,c+1]+latticelr,c-1]1) 24 # re-calculate the energy for a spin state change
4
35 # calculate the energy 25 E_b = -1«E_a
36 E_a = -0.5%lattice[r,clxsum_NN 26
37
4 e T T) G £ i i Input argument names and 27 # choose whether to keep the new state or not
39 Eb = -1xE_a 28 if #<ENTER LOGIC STATEMENT HERE>
40 3 o—
2 £ IR Dy 0 (o (i 7% S O it returned argument names 29 latticelr, c] *= -1
42 if E_b < E_a or (np.exp(—(E_b - E_a)*temp) > np.random.rand()): . . 30
o Tericetr,) s are typically predefined to 31 return lattice
a5 # After the system is stable, calculate the net magnetism by summing over .
46 # all of the spin values and averaging them ease debugglng
47 M.append(np.abs (np.sun(np.sum(lattice)))/(sqrt_Nxsqrt_N))

Ashley S. Dale — DSECOP 2023 Workshop

Conclusion

] Conclusion

- Designed for upper-level physics students

- Scaffolding approach requires minimal coding experience
- Use Jupyter Notebooks as “cheat-sheets” for the future
- Emphasize intuition over how the algorithms behave over memorizing implementations

Let’s chat! daleas@iupui.edu, https://daleas0120.github.io/, aps-gds.slack.com

Ashley S. Dale — DSECOP 2023 Workshop

mailto:daleas@iupui.edu
https://daleas0120.github.io/

