

Beginning at the Beginning: Teaching Novice
Physicists Data Science Programming

Johnny Wei-Bing Lin

Apologies to Lewis Carroll. Photo: Pexels.com, Pixabay.

Preview

● Context for my talk.
● Challenges of teaching novice

scientists how to program.
● General advice when teaching

beginning programming.
● Specific advice for teaching

physicists and data scientists.
Photo: Pexels.com, Pixabay.

Endorsed by
Kari Jordan

(The Carpentries)

Book: tinyurl.com/pyscibook
Rules: tinyurl.com/roaopk

Email: johnny@johnny-lin.com

@Lin_etal_IPySEs

Book: tinyurl.com/pyscibook
Rules: tinyurl.com/roaopk

Email: johnny@johnny-lin.com

@Lin_etal_IPySEs

● Science workflow-driven, not
syntax-driven.

● Examples and practice
problems are from the sciences.

● Very gentle pacing, with many
practice problems.

● Additional discipline-specific
Jupyter notebooks of practice
and homework problems in
biology, chemistry, and physics.

● Teaches novices
programming, not data
science tools per se.

Features

Book: tinyurl.com/pyscibook
Rules: tinyurl.com/roaopk

Email: johnny@johnny-lin.com

@Lin_etal_IPySEs

Contents
● Pt. 1: Getting Basic Tasks Done

(e.g., Python as a calculator,
basic plots, text files).

● Pt. 2: Doing More Complex Tasks
(e.g., n-D data analysis, missing
data).

● Pt. 3: Advanced Programming
Concepts (e.g., inheritance,
searching and sorting, other file
formats, recursion).

● Pt. 4: Going From a Program
Working to Working Well (e.g.,
documentation, profiling, unit
testing).

Photo: Pexels.com, Pixabay.

Challenges of Teaching Novice
Scientists How to Program

Programming Is Hard, Especially
When You First Learn It

Soloway et al. (1983),
described in Guzdial (2010)

The “Rainfall Problem”:
“Write a program that
repeatedly reads in positive
integers, until it reads the
integer 99999. After seeing
99999, it should print out the
average.”

Student Group
% Correct
Using Raw

Pascal

CS 1 14%

CS 2 36%

Systems Course
(Juniors and Seniors) 69%

Photo: Pexels.com, Pixabay.

Substantial Numbers of Students Do
Not Pass CS 1

Photo: Pexels.com, Pixabay.

● Meta-analysis of studies of CS 1 courses from 1979-
2013 (Watson & Li 2014).
– Overall global passing rate: 67%.
– No statistically significant variation over time.
– No statistically significant variation amongst the 4 countries

making up 80% of the sample.
● Bi-modal distribution commonly observed in classes

(Guzdial 2010).

It's Tough to be a Novice Physicist
Programmer

Photo: Pexels.com, Pixabay.

● Most scientific computing resources assume you
already can program.

● Introductory CS resources often focus on CS
puzzles.

● We do not know of one simple, effective,
scalable process to learn programming.

General Advice When Teaching
Beginning Programming

Photo: Pexels.com, Pixabay.

Photo: Pexels.com, Pixabay.

● Do not start with code.
● Outline the steps of the problem in normal

English.
● Write the outline by hand.
● Make the outline have sub-levels.
● Avoid assuming there's a single function to

solve the problem.

Tip #1: Teach How to
Break Apart a Task

Photo: Pexels.com, Pixabay.

● Variables behave differently than in math.
● Defining and calling a function are

different things.
● Students don't get what a function return

value is.
● Use real-world analogies to explain

code concepts.

Tip #2: Don't Assume
Programming Makes Sense

Photo: Pexels.com, Pixabay.

● Ask what each expression in a line of code
returns.

● For each line of code, ask:
– What are the pre-states.
– What are the post-states.
– What did the line change.

● Teach how to make a handwalk table of
variables.

Tip #3: Teach Line-By-Line
Code Reading

1 def add_up(in_list):
2 if len(in_list) == 1:
3 return in_list[0]
4 else:
5 return in_list[0] + \
6 add_up(in_list[1:])
7
8 print(add_up([2, 4, 6]))

Call
Level

Line
in_list Returns

0 1 [2, 4, 6] N/A

4 Select else option

5-6 [2, 4, 6] 2 +
add_up([4, 6])

1 1 [4, 6] N/A

4 Select else option

5-6 [4, 6] 4 +
add_up([6])

... continued ...

Photo: Pexels.com, SpaceX.

Specific Advice for Teaching
Physicists and Data Scientists

● Cool science examples make programming
relevant!

● Cool examples can be difficult for novice
programmers to understand.

● Seeing a pattern does not, by itself, teach you
how to program.

● Scaffold the example into small steps.
● Use repetition to ensure understanding. It's

okay to be basic.

Tip #4: Use Cool Examples
Judiciously

Photo: Pexels.com, SpaceX.

 https://scikit-learn.org/stable/getting_started.html

Some Novice
Questions That

Are Unanswered
● What is a sample?
● What is a feature?
● What is a class of a sample? Is

this OOP?
● What does the estimator

estimate?
● What does it mean to "fit" an

estimator?
● What is a "target value?" How

does that relate to a "classes of
each sample?"

● Why do I want a fitted estimator?

Data:
Independent

Variables

Data:
Dependent
Variables

Model With
Calibrated

Parameters
fit predictUncalibrated

Model

Data

Data for
Training/Fitting

Data for
Validating/Checking

Values of
Independent

Variables

Values of
Dependent
Variables

Time [s] Obj. A
Pos. [m]

Obj. B
Pos. [m]

Obj. C
Pos. [m]

0 0 1.3 4.3

1 1 1.3 6.7

2 2 1.3 10.1

3 3 1.3 22.3

... continued ...

Building Novice
Understanding Through

Repetition
● We want to do a regression of the Object A

Position vs. Time:
– What is a sample?
– What is a feature?
– What is a class of a sample?

● How can we create a fitted estimator using
this data? How can we check how well the
fitted estimator is doing?

● Can we use predict with non-integral
values of time? Why or why not?

● The scikit-learn manual says that the feature
and class have to be 2-D arrays. But these
are 1-D arrays. What do we do?

Conclusions

● Learning how to program is hard.
● Teach how to break down a

solution into tasks a computer
can do.

● Use examples students can
connect with.

● Take small steps in your scaffold.

Photo: Pexels.com, Pixabay.

Endorsed by
Kari Jordan

(The Carpentries)

Book: tinyurl.com/pyscibook
Rules: tinyurl.com/roaopk

Email: johnny@johnny-lin.com

@Lin_etal_IPySEs

References
● Guzdial, M. (2010): Ch. 7 of Oram, A. and G. Wilson, Making

Software: What Really Works, and Why We Believe It, O’Reilly
Media.

● Soloway, E., J. Bonar, et al., 1983. Cognitive strategies and
looping constructs: An empirical study. Communications of the
ACM 26, 11, 853-860.

● Watson, C. and F. W.B. Li, Failure rates in introductory
programming revisited, ItICSE’14, June 21-25, 2014, 39-44.

TWITTER, TWEET, RETWEET and theTwitter Bird logo are trademarks of Twitter Inc. or
its affiliates.

